Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2018.9.1 Nanocatalyst Synthesis of γ-Fe2O3 Nanoparticles and Catalytic activity of Azide-Alkyne Cycloaddition Reactions Synthesis of γ-Fe2O3 Nanoparticles and Catalytic activity of Azide-Alkyne Cycloaddition Reactions Praveen Kumar A Department of Chemistry, College of Natural and Computational Science, Wollega University, Nekemte-P.O. Box: 395, Ethiopia. | Department of Chemistry, Changwon National University, Changwon 641-773, Republic of Korea. Sudhakara K Rural Development Society, R&D centre, Punjagutta, Hyderabad, India, 500082. Kumar Begari Prem Rural Development Society, R&D centre, Punjagutta, Hyderabad, India, 500082. Raghavender A Rural Development Society, R&D centre, Punjagutta, Hyderabad, India, 500082. Ravi S Rural Development Society, R&D centre, Punjagutta, Hyderabad, India, 500082. Keniec Dunkana Negussa Department of Chemistry, Changwon National University, Changwon 641-773, Republic of Korea. Lee Yong-Ill Department of Chemistry, College of Natural and Computational Science, Wollega University, Nekemte-P.O. Box: 395, Ethiopia. 01 10 2018 1 4 172 182 22 01 2018 14 06 2018 Copyright © 2018, Sami Publishing Company (SPC). 2018 https://www.ajnanomat.com/article_63662.html

Iron nanoparticles (NPs), due to their interesting properties, low cost preparation and many potential applications in ferrofluids, magneto-optical, catalysis, drug delivery systems, magnetic resonance imaging, and biology, have attracted a lot of interest during recent years. In this research, γFe2O3NPs were synthesized through simple co-precipitation method followed by thermal treatment at 300 °C for 2 hours. In our synthesis route, FeCl3 and FeCl2 were employed as precursors to synthesize γ-Fe2O3NPs. This approach is very effective and economical. The γ-Fe2O3NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM),and vibrating sample magnetometer (VSM). The XRD and FT-IR results indicated the formation of γ-Fe2O3NPs. The SEM and TEM images contributed to the analysis of particle size and revealed that the γ-Fe2O3 particle size of the nanopowders ranged from 11 and 13 nm. Magnetic property was measured by VSM at room temperature and hysteresis loops exhibited that the γ-Fe2O3 NPs were super-paramagnetic. The synthesized γ-Fe2O3NPs were applied in order to synthesize mono-triazoles within one molecule using azide-alkyne cycloaddition reactions. KEYWORDS: γ-Fe2O3 Nanoparticles,

γ-Fe2O3 Nanoparticles Co-precipitation method Characterization Catalysis
Cornell, R. M., & Schwertmann, U. (2003) The Iron Oxides : Structure, Properties, Reaction, Occurrences and Uses. WILEY-VCH Verlag GmbH Co. John Wiley & Sons. Yu, S., & Chow, G. M. 2004. J. Mater. Chem., 14: 2781–2786. Tuutijärvi, T., Lu, J., Sillanpää, M., & Chen, G. (2009) J. Hazard. Mater., 166: 1415–1420. Cui, H., Liu, Y., & Ren, W. (2013). Adv. Powder Technol., 24: 93–97. Miguel, O. B., Morales, M. P., Serna, C. J., & Veintemillas-Verdaguer, S. (2002) IEEE Trans. Magn., 38: 2616–2618. taeghwan Hyeon, Su Seong Lee, Jongnam Park, Y. C. and H. B. N. (2001) J. Ameriacan Chem. Soc., 123: 12789–12801. Asuha, S., Zhao, S., Wu, H. Y., Song, L., & Tegus, O. (2009) J. Alloys Compd., 472: L23–L25. Islam, M. S., Kurawaki, J., Kusumoto, Y., Abdulla-Al-Mamun, M., & Mukhlish, M. Z. Bin. 2011. J. Sci. Res., 4: 99. Salazar-Alvarez, G., Muhammed, M., & Zagorodni, A. A. (2006) Chem. Eng. Sci., 61: 4625–4633. Randrianantoandro, N., Mercier, A. M., Hervieu, M., & Grenèche, J. M. (2001) Mater. Lett., 47: 150–158. Strobel, R., & Pratsinis, S. E. (2009) Adv. Powder Technol., 20: 190–194. Shafi, K. V. P. M., Ulman, A., Dyal, A., Yan, X., Yang, N. L., Estournès, C., Fournès, L., Wattiaux, A., White, H., & Rafailovich, M.(2002) Chem. Mater., 14: 1778–1787. Liu, T., Guo, L., Tao, Y., Wang, Y. B., & Wang, W. D.(1999) Nanostructured Mater., 11: 487–492. Cao, S.-W., Zhu, Y.-J., & Zeng, Y.-P. (2009) J. Magn. Magn. Mater., 321: 3057–3060. Iwasaki, T., Kosaka, K., Watano, S., Yanagida, T., & Kawai, T. (2010) Mater. Res. Bull., 45: 481–485. Bacri, J. C., Perzynski, R., Salin, D., Cabuil, V., & Massart, R. (1986) J. Magn. Magn. Mater., 62: 36–46. Kumar, A. P., Kumar, B. P., Kumar, A. B. V. K., Huy, B. T., & Lee, Y. I. (2013) Appl. Surf. Sci., 265: 500–509. Kumar, A. P., Baek, M., Sridhar, C., Kumar, B. P., & Lee, Y. (2014) Bull. Korean Chem. Soc., 35: 1144–1148. Kumar, A. P., Baek, M., Sridhar, C., Kumar, B. P., & Lee, Y. (2014) Bull. Korean Chem. Soc., 35: 1144–1148. C, F. De, Cecilia, M., Souza, B. V. De, Frugulhetti, I. I. P., Castro, H. C., Souza, S. L. D. O., Moreno, T., Souza, L. De, Rodrigues, D. Q., Souza, A. M. T., Abreu, P. A., Passamani, F., Rodrigues, C. R., & Ferreira, V. F. (2009) Eur. J. Med. Chem., 44: 373–383. Genin, M. J., Allwine, D. a, Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. a, Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenko, G. E., Hamel, J. C., Schaadt, R. D., Stapert, D., & Yagi, B. H. (2000) J. Med. Chem., 43: 953–970. Buckle, D. R., Rockell, C. J., Smith, H., & Spicer, B. A. 1984, 27: 223–227. Alexacou, K.-M., Hayes, J. M., Tiraidis, C., Zographos, S. E., Leonidas, D. D., Chrysina, E. D., Archontis, G., Oikonomakos, N. G., Paul, J. V, Varghese, B., & Loganathan, D. (2008) Proteins, 71: 1307–1323. Brockunier, L. L., Parmee, E. R., Ok, H. O., Candelore, M. R., Cascieri, M. A., Colwell, L. F., Deng, L., Feeney, W. P., Forrest, M. J., Hom, G. J., MacIntyre, D. E., Tota, L., Wyvratt, M. J., Fisher, M. H., & Weber, A. E. (2000) Bioorganic Med. Chem. Lett., 10: 2111–2114. Fan, W.: Comprehensive Heterocyclic Chem. II, vol. 4, Pergamon, Oxford, UK (1996). Chem, A., & Ed, I. (2002) Angew. Chem. Int. Ed., 41: 2596–2599. Tornøe, C. W., Christensen, C., & Meldal, M. (2002) J. Org. Chem., 67: 3057–64. Gian Cesare Tron, Tracey Pirali, Richard A. Billington, P. L. C., & Giovanni Sorba, A. A. G. (2012) Med. Res. Rev., 29: 1292–1327. Steenackers, H., Ermolat’ev, D., Trang, T. T. T., Savalia, B., Sharma, U. K., De Weerdt, A., Shah, A., Vanderleyden, J., & Van der Eycken, E. V. (2014) Org. Biomol. Chem., 12: 3671–3678. Kovács, S., Zih-Perényi, K., Révész, Á., & Novák, Z. (2012) Synth., 44: 3722–3730. Wang, D., Salmon, L., Ruiz, J., & Astruc, D. (2013) Chem. Commun., 49: 6956. Kale, S. R., Kahandal, S. S., Gawande, M. B., & Jayaram, R. V. (2013) RSC Adv., 3: 8184. Grigorie, A. C., Muntean, C., & Stefanescu, M. (2015) Thermochim. Acta, 621: 61–67. Stoia, M., Istratie, R., & Păcurariu, C. (2016) J. Therm. Anal. Calorim., 125: 1185–1198.
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2018.9.2 Physical chemistry Understanding the Mechanism of Electrochemical Reduction of CO2 Using Cu/Cu-Based Electrodes: A Review Understanding the Mechanism of Electrochemical Reduction of CO2 Using Cu/Cu-Based Electrodes: A Review Amos Pigewh Department of Chemistry, Faculty of Physical Sciences, Modibbo Adama University of Technology Louis Hitler Department of Pure and Applied Chemistry, University of Calabar, Calabar, Cross River State, Nigeria. Adesina Adegoke Kayode Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria. Eno Ededet Akpan Department of Pure and Applied Chemistry, University of Calabar, Calabar, Cross River State, Nigeria. Udochukwu Akakuru Ozioma Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang, China. Odey Magub Thomas Department of Pure and Applied Chemistry, University of Calabar, Calabar, Cross River State, Nigeria. 01 10 2018 1 4 183 224 21 05 2018 01 07 2018 Copyright © 2018, Sami Publishing Company (SPC). 2018 https://www.ajnanomat.com/article_66836.html

Interestingly, copper has been identified as an ideal metal catalyst for an industrial scale electrochemical reduction of CO2 to various value-added chemicals relative to other metal catalysts reported so far. This is due to the fact that copper and copper-based materials have the potential to convert CO2 to oxygenates such as ethanol, methanol, formates etc. and hydrocarbons such as ethane, methane etc. Mechanistic details on how these products are formed on the catalyst-electrolyte interphase during the reduction process have remained relatively uncovered. This review, therefore, seeks to uncover the mechanism of electrochemical reduction of CO2 on Cu/Cu based electrodes, factors that affect catalytic activity and selectivity for these electrodes as reported in the various literature. This paper is therefore organized as follows: section 1 covers the introduction; an overview of some basic concepts in electrochemical CO2 reduction (ECR) was discussed in section 2, experimental studies were discussed in section 3, and finally the conclusion.

Copper electrode Catalyst Mechanism CO2 reduction Selectivity
1. M.S. Dresselhaus and I.L. Thomas, (2001) Nature, 414:332 . 2. S. Chu and A. Majumdar, (2012) Nature, 488:294 . 3. J.G. Canadell, C. Le Quéré, M.R. Raupach, C.B. Field, E.T. Buitenhuis, P. Ciais, T.J. Conway, N.P. Gillett, R.A. Houghton, and G. Marland, (2007) Proc. Natl. Acad. Sci., 104:18866–18870 . 4. P. Tans and R. Keeling, (2013) URL Http//Www. Esrl. Noaa. Gov/Gmd/Ccgg/Trends, . 5. D.R. Feldman, W.D. Collins, P.J. Gero, M.S. Torn, E.J. Mlawer, and T.R. Shippert, (2015) Nature, 519:339 . 6. M.E. Mann, (2009) Proc. Natl. Acad. Sci., pnas-0901303106 . 7. D. Larcher and J.-M. Tarascon, (2015) Nat. Chem., 7:19 . 8. J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R.D. Srivastava, (2008) Int. J. Greenh. Gas Control, 2:9–20 . 9. A.A. Olajire, (2010) Energy, 35:2610–2628 . 10. N. MacDowell, N. Florin, A. Buchard, J. Hallett, A. Galindo, G. Jackson, C.S. Adjiman, C.K. Williams, N. Shah, and P. Fennell, (2010) Energy Environ. Sci., 3:1645–1669 . 11. E. V Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazábal, and J. Pérez-Ramírez, (2013) Energy Environ. Sci., 6:3112–3135 . 12. N.S. Spinner, J.A. Vega, and W.E. Mustain, (2012) Catal. Sci. Technol., 2:19–28 . 13. D.T. Whipple and P.J.A. Kenis, (2010) J. Phys. Chem. Lett., 1:3451–3458 . 14. Y. Hori, Electrochemical CO2 Reduction on Metal Electrodes BT - Modern Aspects of Electrochemistry, in: Ed. by C.G. Vayenas, R.E. White, and M.E. Gamboa-Aldeco, Springer New York, New York, NY (2008), pp. 89–189. 15. M. Jitaru, D.A. Lowy, M. Toma, B.C. Toma, and L. Oniciu, (1997) J. Appl. Electrochem., 27:875–889 . 16. C.M. Sanchez-Sanchez, V. Montiel, D.A. Tryk, A. Aldaz, and A. Fujishima, (2001) Pure Appl. Chem., 73:1917–1927 . 17. C.S. Chen, A.D. Handoko, J.H. Wan, L. Ma, D. Ren, and B.S. Yeo, (2015) Catal. Sci. Technol., 5:161–168 . 18. W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, and S. Sun, (2013) J. Am. Chem. Soc., 135:16833–16836 . 19. S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song, R.L. House, J.T. Glass, and T.J. Meyer, (2014) J. Am. Chem. Soc., 136:7845–7848 . 20. N. Hoshi, M. Kato, and Y. Hori, (1997) J. Electroanal. Chem., 440:283–286 . 21. Y. Hori, H. Wakebe, T. Tsukamoto, and O. Koga, (1994) Electrochim. Acta, 39:1833–1839 . 22. J.L. DiMeglio and J. Rosenthal, (2013) J. Am. Chem. Soc., 135:8798–8801 . 23. C. Ding, A. Li, S.-M. Lu, H. Zhang, and C. Li, (2016) ACS Catal., 6:6438–6443 . 24. C.H. Lee and M.W. Kanan, (2014) ACS Catal., 5:465–469 . 25. D.H. Won, H. Shin, J. Koh, J. Chung, H.S. Lee, H. Kim, and S.I. Woo, (2016) Angew. Chemie Int. Ed., 55:9297–9300 . 26. A.S. Varela, N. Ranjbar Sahraie, J. Steinberg, W. Ju, H. Oh, and P. Strasser, (2015) Angew. Chemie Int. Ed., 54:10758–10762 . 27. Y. Liu, S. Chen, X. Quan, and H. Yu, (2015) J. Am. Chem. Soc., 137:11631–11636 . 28. K.P. Kuhl, E.R. Cave, D.N. Abram, and T.F. Jaramillo, (2012) Energy Environ. Sci., 5:7050–7059 . 29. R.J. Lim, M. Xie, M.A. Sk, J.-M. Lee, A. Fisher, X. Wang, and K.H. Lim, (2014) Catal. Today, 233:169–180 . 30. R. Schlögl, (2015) Angew. Chemie Int. Ed., 54:3465–3520 . 31. J. Qiao, Y. Liu, F. Hong, and J. Zhang, (2014) Chem. Soc. Rev., 43:631–675 . 32. J. Albo, M. Alvarez-Guerra, P. Castaño, and A. Irabien, (2015) Green Chem., 17:2304–2324 . 33. J.W. Vickers, D. Alfonso, and D.R. Kauffman, (2017) Energy Technol., 5:775–795 . 34. A. Loiudice, P. Lobaccaro, E.A. Kamali, T. Thao, B.H. Huang, J.W. Ager, and R. Buonsanti, (2016) Angew. Chemie Int. Ed., 55:5789–5792 . 35. Y. Song, R. Peng, D.K. Hensley, P. V Bonnesen, L. Liang, Z. Wu, H.M. Meyer III, M. Chi, C. Ma, and B.G. Sumpter, (2016) ChemistrySelect, 1:6055–6061 . 36. Z. Chang, S. Huo, W. Zhang, J. Fang, and H. Wang, (2017) J. Phys. Chem. C, 121:11368–11379 . 37. S. Ma, M. Sadakiyo, M. Heima, R. Luo, R.T. Haasch, J.I. Gold, M. Yamauchi, and P.J.A. Kenis, (2016) J. Am. Chem. Soc., 139:47–50 . 38. Y. Lum, Y. Kwon, P. Lobaccaro, L. Chen, E.L. Clark, A.T. Bell, and J.W. Ager, (2015) ACS Catal., 6:202–209 . 39. C. Hahn, T. Hatsukade, Y.-G. Kim, A. Vailionis, J.H. Baricuatro, D.C. Higgins, S.A. Nitopi, M.P. Soriaga, and T.F. Jaramillo, (2017) Proc. Natl. Acad. Sci., 114:5918–5923 . 40. F.-Y. Zhang, T. Sheng, N. Tian, L. Liu, C. Xiao, B.-A. Lu, B.-B. Xu, Z.-Y. Zhou, and S.-G. Sun, (2017) Chem. Commun., 53:8085–8088 . 41. X. Yang, E.A. Fugate, Y. Mueanngern, and L.R. Baker, (2016) ACS Catal., 7:177–180 . 42. S. Sen, D. Liu, and G.T.R. Palmore, (2014) Acs Catal., 4:3091–3095 . 43. D. Ren, B.S.-H. Ang, and B.S. Yeo, (2016) Acs Catal., 6:8239–8247 . 44. D. Ren, Y. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi, and B.S. Yeo, (2015) ACS Catal., 5:2814–2821 . 45. C. Reller, R. Krause, E. Volkova, B. Schmid, S. Neubauer, A. Rucki, M. Schuster, and G. Schmid, (2017) Adv. Energy Mater., 7:1602114 . 46. Q. Li, J. Fu, W. Zhu, Z. Chen, B. Shen, L. Wu, Z. Xi, T. Wang, G. Lu, and J. Zhu, (2017) J. Am. Chem. Soc., 139:4290–4293 . 47. M. Le, M. Ren, Z. Zhang, P.T. Sprunger, R.L. Kurtz, and J.C. Flake, (2011) J. Electrochem. Soc., 158:E45–E49 . 48. F.-S. Ke, X.-C. Liu, J. Wu, P.P. Sharma, Z.-Y. Zhou, J. Qiao, and X.-D. Zhou, (2017) Catal. Today, 288:18–23 . 49. R. Kas, R. Kortlever, A. Milbrat, M.T.M. Koper, G. Mul, and J. Baltrusaitis, (2014) Phys. Chem. Chem. Phys., 16:12194–12201 . 50. M.N. Hossain, J. Wen, and A. Chen, (2017) Sci. Rep., 7:3184 . 51. T.T.H. Hoang, S. Ma, J.I. Gold, P.J.A. Kenis, and A.A. Gewirth, (2017) ACS Catal., 7:3313–3321 . 52. A.D. Handoko, C.W. Ong, Y. Huang, Z.G. Lee, L. Lin, G.B. Panetti, and B.S. Yeo, (2016) J. Phys. Chem. C, 120:20058–20067 . 53. D. Gao, I. Zegkinoglou, N.J. Divins, F. Scholten, I. Sinev, P. Grosse, and B. Roldan Cuenya, (2017) ACS Nano, 11:4825–4831 . 54. A. Dutta, M. Rahaman, N.C. Luedi, M. Mohos, and P. Broekmann, (2016) ACS Catal., 6:3804–3814 . 55. J. Chung, J. Koh, E.-H. Kim, and S.I. Woo, (2016) Phys. Chem. Chem. Phys., 18:6252–6258 . 56. C.S. Chen, J.H. Wan, and B.S. Yeo, (2015) J. Phys. Chem. C, 119:26875–26882 . 57. G. Keerthiga, B. Viswanathan, C.A. Pulikottil, and R. Chetty, (2012) Bonfring Int. J. Ind. Eng. Manag. Sci., 2:41–43 . 58. E. Andrews, M. Ren, F. Wang, Z. Zhang, P. Sprunger, R. Kurtz, and J. Flake, (2013) J. Electrochem. Soc., 160:H841–H846 . 59. W. Lv, J. Zhou, J. Bei, R. Zhang, F. Kong, and W. Wang, (2016) Int. J. Electrochem. Sci., 6183–6191 . 60. Q. Tang, Y. Lee, D.-Y. Li, W. Choi, C.W. Liu, D. Lee, and D. Jiang, (2017) J. Am. Chem. Soc., 139:9728–9736 . 61. D. Kim, C. Xie, N. Becknell, Y. Yu, M. Karamad, K. Chan, E.J. Crumlin, J.K. Nørskov, and P. Yang, (2017) J. Am. Chem. Soc., 139:8329–8336 . How to cite this manuscript: Amos, P.I.*, Louis, H, Kayode A.A, Eno E.A, Akakuru O.U, and Magu T.O. Understanding the Mechanism of Electrochemical Reduction of CO2 Using Cu/Cu-Based Electrodes: A Review. Asian Journal of Nanoscience and Materials, 2018, 1, 183-224.
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2018.9.3 Physical chemistry Interaction Parameters for CuCl2 Plus Orange G (OG) at 19.1oC Using Carbon Glassy Electrode (CGE) in KCl Aqueous Solutions Interaction Parameters for CuCl2 Plus Orange G (OG) at 19.1oC Using Carbon Glassy Electrode (CGE) in KCl Aqueous Solutions Gomaa Essamhassan G Arafa Chemistry Department, Faculty of Science, Mansoura University, 35516-Mansoura, Egypt Diab Moustafa Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt. Elsonbati Adel Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt. Abulenader Hamed M Chemistry Department, Faculty of Science, Mansoura University, 35516-Mansoura, Egypt Helmy Asmaa Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt. 01 10 2018 1 4 225 233 01 07 2018 23 09 2018 Copyright © 2018, Sami Publishing Company (SPC). 2018 https://www.ajnanomat.com/article_69758.html

The redox mechanisms were examined for copper chloride in absence and presence of Orange G (OG) at 19.1°C using Carbon glassy electrode (CGE). The supporting electrolyte used is 0.1 M KCl effect of scan rate was also studies for the redox reactions for CuCl2 alone and in presence of the ligand used orange G (OG). Stability constants for the complex formed from the interaction of CuCl2+ Orange G (OG) were evaluated with the different thermo chemical data. Effect of different scan rates were examined for cupric Chloride in absence and presence of the ligand used Orange G (OG).The different scans used are 0.1, 0.05, 0.02 and 0.01 V/Sec. The stability constants and Gibbs free energies of complexation were also estimated for the interaction of CuCl2 with Orange G (OG) in 0.1MKCl supporting electrolyte.

Solvation parameters Cyclic Voltammetry copper chloride orange G (OG) glassy carbon electrode (CGE)
Hunsin M, Prmksakorn K., Damonglerd S , Vegnesk H, Duverneuit P (2005) Water Res 39:610-616. Kaminaria NMS , Shult D R, Ponte MJ, Ponte HA, MarinaCE, Neta AC (2007) Chem Eng J 126: 139-146 Basha CB, Bhadrinarayana NS, Anantharaman N, Begam KM (2008) J Hazard Mater 152:71-78. Doulabes L , Nory K, StuchiS, Comninellis Ch (2000) Electrochim Acta , 46 : 349-356. Yang CC (2003) J Power Sources, 115:352-359. Brandon NP, Pilone D, Kelson GH, Yin Q (2003) J Appl Electrochem 23 :853-862. Osredkar Josko and Sustar Natasa (2011) J Clinical Toxilology 2-18. Pizarro Araya M, Olivares F, Arredonda M, Gonzalez M (2006) Biol Res 183-187. Eva France Eva, Elena L′Opez-Torres Elena, Mendiola MA, Teresa M, Sevilla S (2000) Polyhedron,19: 441-451 Seleem HS,Emara AA,Shebl (2007) J Corrdin Chem 58:1003—1019. EL-Shereafy SE, Gamaa EA,. Yousif AH and Abou El-Yazed AS (2017) Iranian Journal of Materials Science & Engineering 14 :11-20. KaTelhan Enna and Compton Richard G(2015)ChemEloChem 2 : 64-67. Eloul Shaltiel and Compton Richard G (2015) J. Phys. Chem. C, 114:27540-27549. Nicholson Richard S (1965) Analytical Chemistry 37: 1351-1355. El-Askalany Abdel Moneum, Abou –EL-Magd Mohamed (1995) Chem Pharm Bull 42: 1791-1792. Ibrahim KM, Gomaa EA , Zaky RR, Abdel Hady M (2012) American Journal of Chemistry 2:23-26. Gomaa Esam A(2012) International Journal of Materials and Chemistry, 2 (1)(2012)16-18. Gomaa Esam A (2012) Physics and Chemistry of Liquids 50:279-283. Gomaa Esam A (2012) American Journal of Polymer Science, 2 :35-47. Gomaa Esam A(2012) American Journal of Enivronmental Engineering 2: 54-57. Gomaa Esam A( 2012) Eur Chem Bull, 2:732-735. Gomaa Esam A, Abou Ellef E M and Mahmoud EA (2013) Eur Chem Bull 2:732-737 Gomaa Esam A (2012) International Journal of Theoretical And MathematicalPhysics 3(:151,154. Gomaa Esam A , Jahdali BA (2012) Eduction,2(3:25-28. Gomaa Esam A(1986) Indian J of Tech 24:725-726. Gomaa Esam A and Beghit G (1990) Asian J of Chem 21:444 449. Gomaa Esam A(1984) Thermochim Acta, 80:355. Gomaa Esam A(1989) Croatica Chimica Acta, 62:)475. Gamaa Esam A, Mousa MA and El-Khouly AA (1985) Thermochim Acta 86:351. Gomaa Esam A,. Morsi Mohamed A., Negm Amr E. and. Sherif Yara A (2017) Int J of Nanodimens 8:89-96.
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2018.9.4 Inorganic chemistry Theoretical insights of the electronic structures, conductivity, and aromaticiy of Graphyne and Si-doped Graphynes Theoretical insights of the electronic structures, conductivity, and aromaticiy of Graphyne and Si-doped Graphynes Ghiasi Reza Department of Chemistry, East Tehran Branch, Islamic Azad University, Qiam Dasht, Tehran, IRAN Aghazadeh Kozeh Kanani Faegheh Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, IRAN 01 10 2018 1 4 234 243 09 07 2018 27 09 2018 Copyright © 2018, Sami Publishing Company (SPC). 2018 https://www.ajnanomat.com/article_69771.html

In the present research, the dipole moment, electronic structure, frontier orbitals energy, and aromaticity in the graphyne and Si-doped graphynes were studied with M062X quantum chemical computation. The relative energies of four possible isomers of Si-doped graphyne were calculated. Also, the ionization potential (IP) and electron affinity (EA) values of the studied molecules were reported. Frontier orbital (HOMO-LUMO) gap values were used for illustration of conductivity of these molecules. Aromaticity of the cycles of studied molecules was investigated by nucleus independent chemical shift (NICS) values and electron localization function (ELF).

Graphyne Si-doped Graphyne Nucleus independent chemical shift (NICS) electron localization function (ELF)
R.H. Baughman, H. Eckhardt, M. Kertesz, (1987) J. Chem. Phys. , 87, 6687-6699. T. Yoshimura, A. Inaba, M. Sonoda, K. Tahara, Y. Tobe, R.V. Williams, (2006) Org. Let., 8, 2933-2936. G.X. Li, Y.L. Li, H.B. Liu, Y.B. Guo, Y.J. Li, Z. D.B, (2012) Chem. Commun 46, 3256-3258. X. Qian, Z. Ning, Y. Li, H. Liu, C. Ouyang, Q. Chen, Y. Li, (2012) Dalton Trans, 41, 730-733. S. Wang, L.X. Yi, J.E. Halpert, X.Y. Lai, Y.Y. Liu, H.B. Cao, R.B. Yu, D. Wang, Y.L. Li, (2012) Small, 8, 265-271. F. Diederich, Y. Rubin, (1992) Angew. Chem. Int., Ed.Engl., 31, 1101. F. Diederich,(1994) Nature (London) 369, 199. E.A. Belenkov, I. Chelyab, (2002) Nauchn. Tsentra UrO Ross. Akad. Nauk, 14, 12. V.R. Coluci, S.F. Braga, S.B. Legoas, D.S. Galvao, R.H. Baughman, (2003) Phys. Rev. B: Condens. Matter, 68, 35430. A.N. Enyashin, A.A. Sofronov, Y.N. Makurin, A.L. Ivanovski, (2004) J. Mol. Struct.: THEOCHEM, 684, 29. V.R. Coluci, D.S. Galvao, R.H. Baughman, (2004) J. Chem. Phys., 121, 3228. V.R. Coluci, S.F. Braga, S.B. Legoas, D.S. Galvao, R.H. Baughman, (2004) Nanotechnology, 15, S142. C. Lepetit, C. Zou, R. Chauvin, (2006) J. Org. Chem. , 71, 6317. E.A. Belenkov, I.V. Shakhova, (2011) Phys. Solid State, 53, 2385. A.I. Podlivaev, L.A. Openov, (2012) Phys. Solid State 54, 1723. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, in, Gaussian, Inc., Wallingford CT, )2009(. Y. Zhao, D.G. Truhla, (2006) J. Phys. Chem. A, 110, 5121-5129. M. Head-Gordon, J.A. Pople, M.J. Frisch, (1988) Chem. Phys. Lett., 153, 503-506. S. Saebø, J. Almlöf, (1989) Chem. Phys. Lett., 154, 83-89. M.J. Frisch, M. Head-Gordon, J.A. Pople, (1990) Chem. Phys. Lett., 166, 275-280. M.J. Frisch, M. Head-Gordon, J.A. Pople, Chem. Phys. Lett., 166, 281-289 (1990). M. Head-Gordon, T. Head-Gordon, (1994) Chem. Phys. Lett., 220, 122-128. S. Grimme, (2006) J. Comput. Chem. , 27, 1787-1799. J.D. Chai, M. Head-Gordon, Phys. Chem. (2008) Chem. Phys. , 10, 6615-6620. K. Wolinski, J.F. Hinton, P. Pulay, (1990) J. Am. Chem. Soc, 112, 8251–8260. T.Lu, F. Chen, (2012) J. Mol.Graphics. Model, 38, 314. V. Librando, A. Alparone, Z. Minniti, (2008) Journal of Molecular Structure: THEOCHEM, 856, 105. P.K. Chattaraj, P. Fuentealba, B. Gomez, R. Contreras, (2000) J. Am. Chem. Soc, 122, 348. P.K. Chattaraj, S. Sengupta, (1996) J. Phys. Chem. A, 100, 16126. T.K. Ghanty, S.K. Ghosh, (1996) J. Phys. Chem. A, 100, 12295. A. Curioni, M. Boero, W. Andreoni, (1998) Chem Phys Lett 294, 263–271. I. Wang, E. Botzung-Appert, O.S.p. O, A. Ibanez, P.L. Baldeck, (2002) J Opt A Pure Appl Opt 4,S258–S260. R.G. Pearson, Chemical Hardness, Wiley-VCH: Oxford, )1997(. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press: New York, )1989(. R.G. Parr, L.v. Szentpály, S.Liu, (1999) J. Am. Chem. Soc, 121, . R.G. Pearson, (1986) Proc. Natl. Acad. Sci., 83, 8440‐8441. S. Li, Semiconductor Physical Electronic, 2nd ed ed., Springer, USA, )2006(. K.B. Wiberg, Chem. ReV. , 101, 1317-1331 (2001). E.L. Spitler, C.A. Johnson, M.M. Haley, (2006) Chem. ReV. , 106, 5344-5386. H.A. Staab, F. Graf, (1966) Tetrahedron Lett, 7, 751-757. L. Pauling, (1936) J. Chem. Phys., 4, 673-677. J.A. Pople, K.G. Untch, J. Am. Chem. Soc. , 88, 4811-4815 (1966). Z. Chen, C.S. Wannere, C. Corminboeuf, R. Puchta, P.v.R. Schleyer, (2005) Chem. Rev. , 105, 3842-3888. A. Becke, K. Edgecombe, (1990) J. Chem. Phys. , 92, 5397. A. Savin, A. Becke, D. Flad, R. Nesper, H. Preuss, H.V. Schnering, (1991) Angew. Chem., Int. Ed. Engl., 30, 409. J.C. Santos, W. Tiznado, R. Contreras, P. Fuentealba, (2004) J. Chem. Phys., 120, 1670. How to cite this manuscript: Reza Ghiasi*, Faegheh Aghazadeh Kozeh Kanani. Theoretical insights of the electronic structures, conductivity, and aromaticiy of graphyne and Si-doped graphynes. Asian Journal of Nanoscience and Materials, 2018, 1 (4), 234-243.
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2018.9.5 Application of nanomaterial Promising anti-inflammatory bio-efficacy of saponin loaded silver nanoparticles prepared from the plant Madhuca longifolia Promising anti-inflammatory bio-efficacy of saponin loaded silver nanoparticles prepared from the plant Madhuca longifolia Sharma Mukti Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Agra, 282005, India. Yadav Saurabh Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Agra, 282005, India. Srivastava Man Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Agra, 282005, India. Ganesh Narayanan Jawaharlal Nehru Cancer Hospital & Research Centre, Bhopal, 462001, India. Srivastava Shalini Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Agra, 282005, India. 01 10 2018 1 4 244 261 02 07 2018 15 09 2018 Copyright © 2018, Sami Publishing Company (SPC). 2018 https://www.ajnanomat.com/article_69788.html

Phyto-compounds facilitated synthesis of nanoparticles has created an exceptional impact in the formation of nanoparticles and is used for the synthesis of modern nano drugs. Ignorance about phytochemical composition particularly knowledge of the bio-active principle of medicinal plant restricts the demonstration of the real picture of the enhancement of any bio-efficacy. The present communication scientifically established anti-inflammatory bio-efficacy in seeds of the folk plant Madhuca longifolia and its significant enhancement by bio-active principle (saponin) loaded silver nanoparticles (S@AgNps). A family of four saponins has been explored quantified (3.59%) and characterized (Micro Mass ESI-TOF MS spectra). Synthesis of S@AgNps has been conducted in a green single step and thoroughly characterized. In- vivo assessment of anti-inflammatory bio-efficacy has been carried out using carrageenan induced hind paw edema in Swiss albino mice model. Anti-inflammation bio-efficacy of native seed extract (15 mg/kg/bw) was found 46.84% which was further elevated and further rose to 56.10% by saponin at considerable low optimized dose (1.5 mg/kg/bw). Anti-inflammatory bio-efficacy was further successfully enhanced to (70.99%) by S@AgNps, almost close to that of reference drug (Diclofenac sodium; 76.42%). Saponin loaded silver nanoparticles (S@AgNps) prepared from the seed extract of the plant M. longifolia seem to be an ideal candidate for the development of complimentary herbal nanomedicine for anti-inflammation.

Madhuca longifolia Green synthesis Saponin loaded silver nanoparticles Enhanced anti-inflammatory activity
Cornell, R. M., & Schwertmann, U. (2003) The Iron Oxides : Structure, Properties, Reaction, Occurrences and Uses. WILEY-VCH Verlag GmbH Co. John Wiley & Sons. Yu, S., & Chow, G. M. 2004. J. Mater. Chem., 14: 2781–2786. Tuutijärvi, T., Lu, J., Sillanpää, M., & Chen, G. (2009) J. Hazard. Mater., 166: 1415–1420. Cui, H., Liu, Y., & Ren, W. (2013). Adv. Powder Technol., 24: 93–97. Miguel, O. B., Morales, M. P., Serna, C. J., & Veintemillas-Verdaguer, S. (2002) IEEE Trans. Magn., 38: 2616–2618. taeghwan Hyeon, Su Seong Lee, Jongnam Park, Y. C. and H. B. N. (2001) J. Ameriacan Chem. Soc., 123: 12789–12801. Asuha, S., Zhao, S., Wu, H. Y., Song, L., & Tegus, O. (2009) J. Alloys Compd., 472: L23–L25. Islam, M. S., Kurawaki, J., Kusumoto, Y., Abdulla-Al-Mamun, M., & Mukhlish, M. Z. Bin. 2011. J. Sci. Res., 4: 99. Salazar-Alvarez, G., Muhammed, M., & Zagorodni, A. A. (2006) Chem. Eng. Sci., 61: 4625–4633. Randrianantoandro, N., Mercier, A. M., Hervieu, M., & Grenèche, J. M. (2001) Mater. Lett., 47: 150–158. Strobel, R., & Pratsinis, S. E. (2009) Adv. Powder Technol., 20: 190–194. Shafi, K. V. P. M., Ulman, A., Dyal, A., Yan, X., Yang, N. L., Estournès, C., Fournès, L., Wattiaux, A., White, H., & Rafailovich, M.(2002) Chem. Mater., 14: 1778–1787. Liu, T., Guo, L., Tao, Y., Wang, Y. B., & Wang, W. D.(1999) Nanostructured Mater., 11: 487–492. Cao, S.-W., Zhu, Y.-J., & Zeng, Y.-P. (2009) J. Magn. Magn. Mater., 321: 3057–3060. Iwasaki, T., Kosaka, K., Watano, S., Yanagida, T., & Kawai, T. (2010) Mater. Res. Bull., 45: 481–485. Bacri, J. C., Perzynski, R., Salin, D., Cabuil, V., & Massart, R. (1986) J. Magn. Magn. Mater., 62: 36–46. Kumar, A. P., Kumar, B. P., Kumar, A. B. V. K., Huy, B. T., & Lee, Y. I. (2013) Appl. Surf. Sci., 265: 500–509. Kumar, A. P., Baek, M., Sridhar, C., Kumar, B. P., & Lee, Y. (2014) Bull. Korean Chem. Soc., 35: 1144–1148. Kumar, A. P., Baek, M., Sridhar, C., Kumar, B. P., & Lee, Y. (2014) Bull. Korean Chem. Soc., 35: 1144–1148. C, F. De, Cecilia, M., Souza, B. V. De, Frugulhetti, I. I. P., Castro, H. C., Souza, S. L. D. O., Moreno, T., Souza, L. De, Rodrigues, D. Q., Souza, A. M. T., Abreu, P. A., Passamani, F., Rodrigues, C. R., & Ferreira, V. F. (2009) Eur. J. Med. Chem., 44: 373–383. Genin, M. J., Allwine, D. a, Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. a, Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenko, G. E., Hamel, J. C., Schaadt, R. D., Stapert, D., & Yagi, B. H. (2000) J. Med. Chem., 43: 953–970. Buckle, D. R., Rockell, C. J., Smith, H., & Spicer, B. A. 1984, 27: 223–227. Alexacou, K.-M., Hayes, J. M., Tiraidis, C., Zographos, S. E., Leonidas, D. D., Chrysina, E. D., Archontis, G., Oikonomakos, N. G., Paul, J. V, Varghese, B., & Loganathan, D. (2008) Proteins, 71: 1307–1323. Brockunier, L. L., Parmee, E. R., Ok, H. O., Candelore, M. R., Cascieri, M. A., Colwell, L. F., Deng, L., Feeney, W. P., Forrest, M. J., Hom, G. J., MacIntyre, D. E., Tota, L., Wyvratt, M. J., Fisher, M. H., & Weber, A. E. (2000) Bioorganic Med. Chem. Lett., 10: 2111–2114. Fan, W.: Comprehensive Heterocyclic Chem. II, vol. 4, Pergamon, Oxford, UK (1996). Chem, A., & Ed, I. (2002) Angew. Chem. Int. Ed., 41: 2596–2599. Tornøe, C. W., Christensen, C., & Meldal, M. (2002) J. Org. Chem., 67: 3057–64. Gian Cesare Tron, Tracey Pirali, Richard A. Billington, P. L. C., & Giovanni Sorba, A. A. G. (2012) Med. Res. Rev., 29: 1292–1327. Steenackers, H., Ermolat’ev, D., Trang, T. T. T., Savalia, B., Sharma, U. K., De Weerdt, A., Shah, A., Vanderleyden, J., & Van der Eycken, E. V. (2014) Org. Biomol. Chem., 12: 3671–3678. Kovács, S., Zih-Perényi, K., Révész, Á., & Novák, Z. (2012) Synth., 44: 3722–3730. Wang, D., Salmon, L., Ruiz, J., & Astruc, D. (2013) Chem. Commun., 49: 6956. Kale, S. R., Kahandal, S. S., Gawande, M. B., & Jayaram, R. V. (2013) RSC Adv., 3: 8184. Grigorie, A. C., Muntean, C., & Stefanescu, M. (2015) Thermochim. Acta, 621: 61–67. Stoia, M., Istratie, R., & Păcurariu, C. (2016) J. Therm. Anal. Calorim., 125: 1185–1198. How to cite this manuscript: Mukti Sharma, Saurabh Yadav, Man Mohan Srivastava, Narayanan Ganesh, Shalini Srivastava,*. Promising anti-inflammatory bio-efficacy of saponin loaded silver nanoparticles prepared from the plant Madhuca longifolia. Asian Journal of Nanoscience and Materials, 2018, 1(4) , 244-261.
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2018.9.6 Physical chemistry A Quantum, NBO, RDG study the interaction of cadmium ion with the pristine, C, P and C&P doped (4,4) armchair boron nitride nanotube (BNNTs) A Quantum, NBO, RDG study the interaction of cadmium ion with the pristine, C, P and C&P doped (4,4) armchair boron nitride nanotube (BNNTs) Rezaei Sameti Mahdi Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, 65174, Iran Amirian B. Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, 65174, Iran 01 10 2018 1 4 262 270 01 06 2018 19 09 2018 Copyright © 2018, Sami Publishing Company (SPC). 2018 https://www.ajnanomat.com/article_69790.html

In this paper, by using of density function theory (DFT), we have investigated the interaction and adsorption of Cd+2 ion on the interior and exterior surface of pristine, C, P and C&P doped BNNTs. The calculated results indicate that the adsorption of Cd+2 is exothermic in thermodynamic approach. With adsorbing Cd+2 ion the electrical and optical properties of system alter significantly from original state. Inspection of quantum, natural bond orbital (NBO) and reduced density gradient (RDG) results confirm that the pristine and doped BNNTs are a good candidate to making sensor and adsorbent of Cd+2 in biological and environmental system.

BNNTs Adsorption Cd+2 DFT RDG
1. Fechner P, Damdimopoulou P, Gauglitz G, (2011). Plos One. 6 (8): 23044-23048. 2. Chropra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Science 269:966–967. 3. Xie Y, Huo Y P, Zhang J M, (2012) Appl. Surf. Sci. 258: 6391–6397. 4. Beheshtian J, Peyghan AA, Bagheri Z, (2012) Sens. Actuators B. 171–172 : 846–852. 5. Beheshtian J, Baei MT, Peyghan AA, (2012) Surf. Sci. 606: 981–985. 6. Ahmadi A, Beheshtian J , Hadipour N, (2011) Struct. Chem. 22: 183–188. 7. Wu XJ, Yang JL, Hou JG, Zhu QS, (2004) J. Chem. Phys. 121: 8481. 8. Han SS, Lee SH, Kang JK, Lee HM, (2005) Phys. Rev. B 72: 113402. 9. Zhou Z, Zhao JJ, Chen ZF, Gao XP, Yan TY, Wen B, von P, Schleyer R, (2006) J. Phys.Chem. B. 110: 13363. 10. Li F, Zhu ZH, Zhao MW, Xia YY, (2008) J. Phys. Chem. C. 112: 16231. 12. Li F, Zhu ZH, Yao XD, Lin GQ, Zhao MW, Xia YY, (2008) Appl. Phys. Lett. 92 : 102515. 13. Zhang ZH, Guo WL, (2009) J. Am. Chem. Soc. 131: 6874. 13. Zhao JX, Ding YH, (2008) J. Phys. Chem. C. 112: 5778–5783. 14. Xie Y, Zhang JM, (2011) Comput. Theor. Chem. 976: 215–220. 15. Wu XJ, Yang JL, Hou JG, Zhu QS, (2006) J. Chem. Phys. 124: 54706. 16. Wang RX, Zhang DJ, Liu YJ, Liu CB, (2009) Nanotechnology. 20: 505704. 17. Wang RX, Zhu RX, Zhang DJ, (2005) Aust. J. Chem. 61: 941–945. 18. Rezaei-Sameti M, Ataeifar F, (2018) Iranian Chem. Commu. 6: 280-292. 19. Rezaei−Sameti M, Bagheri M, (2017) J. Phys. Theo. Chem. 14 (1): 63-80. 20. Rezaei‑Sameti M , Moradi F, (2017) J. Incl Phenom. Macrocycl. Chem. 88: 209–218 21. Rezaei‒Sameti M, Samadi Jamil E, (2016) J. Nanostruct. Chem. 3: 1‒9. 22. Frisch Mj, et al. (2009) GAUSSIAN 09. 23. Zhao JX, Da BQ, (2004) Mater.Chem.Phys.88:244–249. 24. Monajjemi M, Seyed Hosseini M, Molaamin F, (2013) J. Fullerenes, Nanotube Carbon Nanostr.21: 381–393. 25. Johnson ER, Keinan S, Mori‒Sanchez P, Contreras‒Garcia J, Cohen AJ, Yang W, (2010) J. Am. Chem. Soc 132: 6498‒6506. 26. Runge E, Gross EKU, (1984) Phy. Rev. Lett. 52: 997‒1000
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2018.9.7 Application of nanocatalyst Removal of Pb (II) from aqueous solution by gel combustion of a new nano sized Co3O4/ZnO composite Removal of Pb (II) from aqueous solution by gel combustion of a new nano sized Co3O4/ZnO composite Sheikhshoaie Iran Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, 76175, Iran Rezazadeh Azimeh Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, 76175, Iran | Young Research Society, Shahid Bahonar University of Kerman, Kerman, Iran. Ramezanpour Samaneh Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, 76175, Iran | Young Research Society, Shahid Bahonar University of Kerman, Kerman, Iran. 01 10 2018 1 4 271 281 10 04 2018 03 09 2018 Copyright © 2018, Sami Publishing Company (SPC). 2018 https://www.ajnanomat.com/article_69363.html

Nano Co3O4/ZnO has been successfully synthesized by a simple and green gel combustion method followed by calcination at 600 o C. Sugar was used as fuel for combustion in this work. The nano Co3O4–ZnO was characterized by X-ray diffraction (XRD), Energy Dispersive X-Ray analysis (EDAX) and Scanning electron microscopy (SEM). Co3O4–ZnO was applied as an adsorbent to remove lead from aqueous solution.EDAX strongly proved the adsorption of lead on the surface of Co3O4-ZnO adsorbent. By increasing the amount of ZnO on the structure of the Co3O4-ZnO samples, the adsorption of Pb2+ on the surface was increased too. The SEM images also help the confirmation of lead adsorption on the surface of as synthesized samples. The concentrations of remained Pb2+ ions were also measured by atomic absorption spectroscopy (AAS) and reported in terms of removal efficiency.

Gel combustion Adsorption Lead removal Nanosized Co3O4/ZnO
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2018.9.8 Physical chemistry Thermodynamic data (Voltammetrically) Estimated for the Interaction of Nano Cadmium Chloride (Ncc) with Isatin Using Glassy Carbon Electrode Thermodynamic data (Voltammetrically) Estimated for the Interaction of Nano Cadmium Chloride (Ncc) with Isatin Using Glassy Carbon Electrode Morsi Mohamed A Chemistry Department, Faculty of Science, Mansoura University, 35516- Mansoura, Egypt Gomaa Essam hassan Chemistry Department, Faculty of Science, Mansoura University, 35516- Mansoura, Egypt Nageeb Alaa S Chemistry Department, Faculty of Science, Mansoura University, 35516- Mansoura, Egypt 01 10 2018 1 4 282 293 11 07 2018 29 09 2018 Copyright © 2018, Sami Publishing Company (SPC). 2018 https://www.ajnanomat.com/article_69911.html

The redox behavior for nano cadmium chloride (Ncc) was studied using cyclic voltammetry in the absence and presence of isatin (Isa.) on the use carbon glassy electrode (CGE) prepared in laboratory in 0.1M KCl electrolytic solution at two different temperatures . All cyclic voltamograms were carried at the selected temperatures in the absence and presence of isatin (Isa.). The redox reactions and reaction mechanism were suggested. All avialable cyclic voltammetry and thermodynamic data were calculated from cyclic voltammetry measurments and their values were explained .All the thermodynamic parameters necessary for the interaction of nano CdCl2 withisatin were calculate,explained and interapretatited.

Cyclic Voltammetry thermodynamic parameters nano cadmium chloride (Ncc) Isatin (Isa)
Salata O. (2004) J Nanobiotechnol 2: 2-3. Christa M and Grozescu E (2009) Chem Bull Politechnica Univ (Timisoura) 54 : 68. Muataz Ali, Fegling Zhou, Kun Chen , Christopher Kotzur, Changlong Xiao, Laure, Zhang Xing, Bourgeois , Farlane Mac, Douglas R ( 2016)Nature Communications, Accepted 16 Mar. 2016, DOI: 10.1038/ncomms 11335. Magdassi Shlomo, Grouchko Michael and Kamyshny (2010) Materials 4626-4638 Saran S,Sharma g,Kumar Manoj,Ali MI (2017) International Journal of Pharmaceutical Sciences and Research 8:3887-3890. Gutten Ondrej and Rulisek Lubomir(2013) Inorg Chem 52(18): 10347 – 10355. Mounyr Balouiri, Moulay Sadiki, Saad Koraichi Ibn Souda (2016) Journal of Pharmaceutical Analysis 6 :71–79. Siraj Shaik, Madhusudana Rao Kummara, Sudhakar Poluru, Chandrababu Allu, Jaffer Mohiddin Gooty, Chowdoji Rao Kashayi, and Marata Chinna Subbarao Subha (2013) International Journal of Carbohydrate Chemistry Article ID 539636, 10 pages. Katherine B. Holt and Allen J. Bard (2005)Biochemistry 44 (39): 13214–13223. Lissi E, Modak B, Torres R, Escobar J, Urzua A (1999) Free Radic. 30 (6): 471-477. Freimoser F M, Jakob, C A, Aebi M., Tuor U (1999) Appl Environ Microbiol , 65(8): 3727-3729. Mauceri HJ, Hanna N N, Beckett M A Gorski D H, Staba M J, Stellato K A, Bigelow K, Heimann R, Gately S., Dhanabal M., Soff G A, Sukhatme V P, Kufe D W, Weichselbaum R R(1998) Nature 394: 287-291. Killa Hamada M (1985)J Chem Soc Faraday Trans I81: 2659-2666 . Conway B E (1966) Ann Rev Phys Chem 17: 481-528 . El-Khouly A A, Gomaa E A and Abou El-Leef E M (2003) Bull Electrochem 19(4):153-164. El-Khouly A A, Gomaa E A and Abou El-Leef E M (2003) Bull Electrochem 19(5):193-202 . Gomaa E A Abou Elleef E M and Mahmoud E H (2013)Eur Chem Bull2(10): 732-735 . Gomaa E A (2012) Int J Mater Chem 2(1) :16-18 . Gomaa E A and Al-Jahdali B M (2011) Am J Fluid Dynamics 1(1): 4-8 . Gomaa E A (2010) Analele Universitate din Bucuresti Chimie19: 45-48 . Casey PK Christopher J C and Donald GT (2006) J Phys Chem-B 110: 16066-16081 Gomaa Esam A (2012)Phy Chem Liq 50:279-283 . Gomaa Esam A (2012)Int J Mater Chem 2(1):16-18. Gomaa Esam A (2012) AmJ Polymer Sci 2(3): 35-38. Gomaa Esam A (2013) Eur Chem Bull 1 : 259-261. Gomaa Esam A, Abou Elleef E M (2013)Am Chem Sci J 3: 489-499 . Gomaa Esam A,Negm Amr E,Abu Qarn Reham M(2016) American Association for Science and Technology, AASCIT Communications 3,3 :177-183 . Gomaa Esam A , Abou Elleef E M (2013) Sci .Technol., 3: 118-122 . Gomaa Esam A, Zaky Rania R, Negm Amr E, Rashad Radwa T(2016) American Association for Science and Technology, AASCIT Communications, 3,5:224-230. Gomaa, Esam A, Negm Amr E,Tahoon Mohamed A (2016) European Journal of Chemistry7(3):341-346. How to cite this manuscript: Mohamed A. Morsi, Esam A. Gomaa * and Alaa S. Nageeb. Thermodynamic data (Voltammetrically) Estimated for the Interaction of Nano Cadmium Chloride (Ncc) with Isatin Using Glassy Carbon Electrode. Asian Journal of Nanoscience and Materials, 2018, 1 (4), 282-293.