Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2018.3.1 Organic Chemistry Production of methyl ester biofuel from sunflower oil via transesterification reaction Production of methyl ester biofuel from sunflower oil via transesterification reaction Jabbari Hadi Department of Chemistry, Payame Noor University, PO BOX 19395-4697 Tehran, Iran 01 05 2018 1 2 52 55 22 01 2018 02 03 2018 Copyright © 2018, Sami Publishing Company (SPC). 2018 https://www.ajnanomat.com/article_58261.html

methyl ester is a liquid biofuel obtained by chemical processes from vegetable oils or animal fats and an alcohol that can be used in diesel engines, alone or blended with diesel oil.in this study , the transesterification of sunflower oil with methanol was studied using NaOH as catalyst.the dependence of the conversion of sonflower oil on the reactions variables as methyl ester preparation, Separation of methyl ester from by-products, methyl ester purification, Effect of Molar ratio of Methanol to oil on Transesterification, Effect of Catalyst Concentration on Transesterification, was performed.The limited fossil fuel resources along with the need to reduce Green House Gas emissions were a major impulse to the development of alternative fuels. As a result, increased attention has been given to biofuels, such as biodiesel, that can be used as an alternative fuel in compression–ignition engines. Its production from renewable resources, such as vegetable oils and animal fats, makes it biodegradable and non-toxic; also, it contributes to the reduction of CO2 emissions, because it comprises a closed carbon cycle

Methyl ester sunflower oil Transesterification Biofuel
1. Corma A, Iborra S, and Velty A (2007) Chemical reviews 107(6): 2411-2502. 2. Dıez V.K, Apesteguıa C.R, (2003) Journal of Catalysis 215(2): 220-233. 3. Rao K.K, Gravelle M.J, Figueras F (1998) Catal 173:115-127. 4. Abello S, Pérez-Ramírez (2005). Chem. Commun, 14:53-59. 5. Gerpen v (2005) Fuel Processing Technology, 86:1097-1106. 6. Hossain A. B. M. S, Boyce A. N. A (2010) African Journal of Agricultural Research, 5:1851–1859. 7. Wan Omar W. N. N., Saidina Amin N. A (2011) Biomass and Bioenergy,35(3):1329–1338. 8. Gan S, Chan P. H, Leong F. L (2012) Fuel Processing Technology, 102: 67–72. 9. Refaat A. A (2010) International Journal of Environmental Science and Technology 7(1): 183–213. 10. Kiakalaieh A.T, Zarei A, Noshadi I (2013) Applied Energy 102: 283–292.
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2018.3.2 Analytical chemistry Stir bar sorptive extraction as a sample preparation technique for chromatographic analysis: An overview Stir bar sorptive extraction as a sample preparation technique for chromatographic analysis: An overview Bader Nabil Chemistry department, Faculty of science, University of Benghazi, Benghazi, Libya 01 05 2018 1 2 56 62 06 02 2018 05 03 2018 Copyright © 2018, Sami Publishing Company (SPC). 2018 https://www.ajnanomat.com/article_58382.html

Sample preparation is an important step in chemical analysis. The present article gives an overview about the Stir bar sorptive extraction (SBSE) as a technique for sample preparation for chromatographic analysis. Stir bar extraction, desorption steps and optimization of the extraction conditions like pH, extraction time, addition of an inert salt, addition of an organic modifier and stirring speed have been discussed. Extraction mechanism, advantages, disadvantages and some applications in water, environmental, pharmaceutical and food analysis have been also discussed. The application of SBSE can be considered as an attractive alternative to classical extraction methods by reducing the consumption of and exposure to the solvent, disposal cost, and extraction time.

Stir bar sorptive extraction Sample preparation Separation Pre-concentration
1. Dean, R. (1997) Atomic Absorption and Plasma Spectroscopy, John Wiley and sons, Ltd.,Chichester,. 2. Hoenig, M., de Kersabiec, A.-M. (1996) Spectrochimica Acta Part B: Atomic Spectroscopy, 51, 11: 1297-1307. 3. Bader, N. R. (2011) Rasayan J. Chem., 4:49-55. 4. Bader, N. R. (2011) Der Chemica Sinica, 2(5):211-219. 5. De Oliveira, E., (2003) J. Braz. Chem. Soc., 14(2), 174-182. 6. Panahi,H. A., Karimi, M., Moniri, E. and Soudi, H., (2008) African J. Pure Appl. Chem., 2(10) 96 - 99. 7. David, F., Tienpont, B., and Sandra, P. (2003) LC-GC Europe.:1-7. 8. Raynie, D. E. (2006) Anal. Chem., 78:3997-4003. 9. Fontanals, N., Marce, R.M., Borrull, F. (2007) J. Chromatogr. A, 1152:14-31. 10. Baltussen, E., Sandra, P., David, F., Cramers, C., (1999) J. Microcolumn Sep., 11, 737 – 747. 11. Bratkowska, D., Marcéa, R., Cormack, P., Borrulla, F., Fontanals, N. (2011) Analytica Chimica Acta, 706:135-142. 12. Prieto, A., Basauri, O., Rodil, R., Usobiaga, A. Fernandez, L.A, Etxebarria, N., Zuloaga, O. (2010) J. Chromatogr. A, 1217:2642-2656. 13. Baltussen, E., Cramers, C., Sandra P. (2002) Anal. Bioanal. Chem. 373:3-22. 14. Kawaguchi, M., Ito, R., Saito, K., Nakazawa, H. (2006) J. Pharm. Biomed. Anal., 40:500-508. 15. Sanchez-Rojas, F., Bosch-Ojeda, C., Cano-Pavon, J.M. (2009) Chromatographia, 69:79-94. 16. Sanchez-Rojas, F., Bosch-Ojeda, C., Cano-Pavon, J. M. (2009) Chromatographia, 69: S79-94. 17. Chaves, A. R., Silva, S. M., Queiroz, R. H., Lancas, F. M., Queiroz, M. E. C., (2007) J. Chromatogr. B, 850, 295 – 302. 18. Lancas, F., Eugenia, M., Queiroz, C., Grossi, P., Olivares, I. (2009) J. Sep. Sci, 32:813-824. 19. Cacho, J., Campillo, N., Vinas, P., Hernandez-Cordoba, M. (2013) Journal of Pharmaceutical and Biomedical Analysis, 78– 79:255-260. 20. Bratkowska, D., Fontanalsa, N., Cormack, P., Borrulla, F., Marce, R. (2012) Journal of Chromatography A, 1225:1-7. 21. David, F., and Sandra, P. (2007) Journal of Chromatography A, 1152:54-69. 22. Hu, Y., Li, J., Hu, Y., Li, G. (2010) Talanta, 82:464-470. 23. Gvlat, L., Andersson, R., Mosbach, K. (1993) Nature, 361:645. 24. Zhu, X., Cai, J., Yang, J., Su, Q., Gao, Y. (2006) Journal of Chromatography A, 1131:37-44. 25. Nie, Y., Kleine-Benne, E. (2011) App. Note 3, Gerstel GmbH & Co.,Germany. 26. Kolahgar B., Hoffmann A., Heiden, A. (2002) Journal of Chromatography A, 963:225-230. 27. Garcia-Falcon, M.S., Cancho-Grande, B., Simal-Gandara, J., (2004) Water Research, 38:1679-1684. 28. Faraji, H., Waqif Husain, S., and Helalizadeh, M. (2011) Journal of Chromatographic Science, 49:482-487. 29. Silva, A., Portugal, F., Nogueira, J. (2008) Journal of Chromatography A, 1209:10-16. 30. Cavrini, V., Di Pietra, A.M., Gatti, R. (1989) J. Pharm. Biomed. Anal., 7:1535-1543. 31. Rebbeck, C., Hammond, R., Wong, J., Nair, L., Raghavan, N., Hepler, D., Campbell, W., Lynn, R. (2006) Drug. Dev. Ind. Pharm. 32:1095-1102. 32. Marin, A., Espada, A., Vidal, P., Barbas, C. (2005) Anal. Chem., 77:471-477. 33. Hennion, M.C. (1999) J. Chromatogr. A, 856:3-54. 34. Vas, G., and Vekey, K. (2004) J. Mass. Spectrom. 39:233-254. 35. Kole, P. L., Millership, J., McElnay, J. C. (2011) Journal of Pharmaceutical and Biomedical Analysis, 54:701-710. 36. Kassem, M. G. (2011) Arabian Journal of Chemistry, 4:25-35. 37. Ridgwaya, K., Lalljie, S., Smith, R. M. (2010) Analytica Chimica Acta, 657:169-174. 38. Cacho J., Campillo, N., Viñas, P, and Hernández-Córdoba, M. (2015) Food Additives & Contaminants: Part A, 32:665-673.
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2018.3.3 Analytical chemistry Ultra-sensitive electrochemical on-line determination of Clarithromycin based on Poly(L-Aspartic Acid)/Graphite Oxide/Pristine Graphene/Glassy Carbon Electrode Ultra-sensitive electrochemical on-line determination of Clarithromycin based on Poly(L-Aspartic Acid)/Graphite Oxide/Pristine Graphene/Glassy Carbon Electrode Rabiee Navid Department of Chemistry, Shahid Beheshti University, Tehran, Iran Safarkhani Moein Department of Chemistry, Shahid Beheshti University, Tehran, Iran Rabiee Mohammad 1. Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran 2. Engineering Institute of Medical Diagnosis Systems, AmirKabir University of Technology, Tehran, Iran 01 05 2018 1 2 63 73 20 01 2018 16 03 2018 Copyright © 2018, Sami Publishing Company (SPC). 2018 https://https:// https://www.ajnanomat.com/article_59771.html

In this work, a novel and extra sensitive method for on-line continues monitoring of Clarithromycin in whole blood sample was introduced based on coupling of electro-membrane extraction (EME) and stripping fast Fourier transform continuous cyclic voltammetry (SFFTCCV). In this method, the potential waveform was continuously applied on a Poly(L-Aspartic Acid)/Graphite Oxide/Pristine Graphene/Glassy Carbon Electrode and the electrode response was obtained by detracting the background current and in the following integrating the current in the specific potential range of oxidation of the analyte. This method was performed by applying a DC potential and migration of Clarithromycin from the sample solution into a layer of 4-methyl-2-pentanol that is immobilized in the pores of the sheet membrane and then migration into the acceptor solution. A low and valuable detection limit of 1.0 ng ml-1 and quantification limit of 6.0 ng ml-1 are considered as a part of the sensible results of this experiment. Furthermore, an efficient linearity in the range of 6.0-1000 ng ml-1 were found.

Clarithromycin electrochemical on-line determination pristine graphene Poly(L-Aspartic Acid)
1. Lee, J., Lee, H. K., Rasmussen, K. E., & Pedersen-Bjergaard, S. (2008). Anal. Chim. Acta, 624: 253–268. 2. Oliveira, É. C., Echegoyen, Y., Cruz, S. A., & Nerin, C. (2014). Talanta, 127: 59–67. 3. Mofidi, Z., Norouzi, P., Seidi, S., & Reza Ganjali, M. (2017). New J. Chem., 41: 13567–13575. 4. Tiwari, J. N., Vij, V., Kemp, K. C., & Kim, K. S. (2016). ACS Nano, 10: 46–80. 5. Rodríguez-Pérez, L., Herranz, M. Á., & Martín, N. (2013). Chem. Commun., 49: 3721. 6. Balchen, M., Gjelstad, A., Rasmussen, K. E., & Pedersen-Bjergaard, S.(2007). J. Chromatogr. A, 1152: 220–225. 7. Nojavan, S., & Asadi, S. (2016). Electrophoresis, 37: 587–594. 8. Seidi, S., Yamini, Y., Heydari, A., Moradi, M., Esrafili, A., & Rezazadeh, M.(2011). Anal. Chim. Acta, 701: 181–188. 9. Goel, T., Haftka, R. T., Shyy, W., & Watson, L. T. (2008). Int. J. Numer. Methods Eng., 75: 127–155. 10. Gjelstad, A., Rasmussen, K. E., & Pedersen-Bjergaard, S. (2009). Anal. Bioanal. Chem., 393: 921–928 11. Gjelstad, A., & Pedersen-Bjergaard, S. (2011). Bioanalysis, 3: 787–797. 12. Restan, M. S., Jensen, H., Shen, X., Huang, C., Martinsen, Ø. G., Kubáň, P., Gjelstad, A., & Pedersen-Bjergaard, S. (2017). Anal. Chim. Acta, 984: 116–123. 13. Román-Hidalgo, C., Martín-Valero, M. J., Fernández-Torres, R., Callejón-Mochón, M., & Bello-López, M. Á. (2017). Talanta, 162: 32–37.
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2018.3.4 Nanochemistry Superhydrophobic Surface Based Silica Nanoparticle Modified With Diisocyanate and Short and Long Normal Chain Alcohols Superhydrophobic Surface Based Silica Nanoparticle Modified With Diisocyanate and Short and Long Normal Chain Alcohols Taghizadeh Mohammad Javad Department of Organic Chemistry, Faculty of Science, Imam Hossein University, Tehran, Iran Afghihi Salman Department Of Advance Materials, Imam Hossein University, Tehran, Iran Saidi Hamed Department of Polymer Chemistry, Faculty of Chemistry, University of Isfahan, Isfahan, Iran 01 05 2018 1 2 74 80 28 01 2018 16 04 2018 Copyright © 2018, Sami Publishing Company (SPC). 2018 https://https:// https://www.ajnanomat.com/article_60607.html

A superhydrophobic (SH) surface is a nanoscopic coating layer that repels water. Due to extreme water repellency has properties such as self-cleaning and anti-icing. In this context, access to bulk water repellency, cost effective, durability against acids and bases, fluorine free and catalyst free synthesis of a superhydrophobic coating, has been remaining an elusive goal. We demonstrated a unique class of modification of silica nanoparticle with coating by grafting short and long normal chain alcohols on silica nanoparticles surface by a facile two-step method and without catalyst. The modified nanoparticles showed very well SH property. This kind of coating and modification, hitherto undisclosed, is expected to be a breakthrough in the field non fluorine and cost effective industrial SH coatings.

Kewords: Superhydrophobic Cost Effective Silica Nanoparticle Flourine Free Grafted Modification
[1] Feng, X. J., & Jiang, L. 2006. Adv. Mater., 18: 3063–3078. [2] Blossey, R. 2003. Nat. Mater., 2: 301. [3] Gao, X., Yan, X., Yao, X., Xu, L., Zhang, K., Zhang, J., Yang, B., & Jiang, L. 2007. Adv. Mater., 19: 2213–2217. [4] Li, X.-M., Reinhoudt, D., & Crego-Calama, M. 2007. Chem. Soc. Rev., 36: 1350–1368. [5] Wang, S., Liu, K., Yao, X., & Jiang, L. 2015. Chem. Rev., 115: 8230–8293. [6] Wen, L., Tian, Y., & Jiang, L. 2015. Angew. Chemie Int. Ed., 54: 3387–3399. [7] Simpson, J. T., Hunter, S. R., & Aytug, T. 2015. Reports Prog. Phys., 78: 86501. [8] Lai, Y., Tang, Y., Gong, J., Gong, D., Chi, L., Lin, C., & Chen, Z. 2012. J. Mater. Chem., 22: 7420–7426. [9] Sun, Z., Liao, T., Liu, K., Jiang, L., Kim, J. H., & Dou, S. X. 2014, 10: 3001–3006. [10] He, Q., Yu, W., Wu, Y., & Zhou, C. 2012. Soft Matter, 8: 2992–3001. [11] Chu, Z., Feng, Y., & Seeger, S. 2015. Angew. Chemie Int. Ed., 54: 2328–2338. [12] Wang, B., Liang, W., Guo, Z., & Liu, W. 2015. Chem. Soc. Rev., 44: 336–361. [13] Li, J., Shi, L., Chen, Y., Zhang, Y., Guo, Z., Su, B., & Liu, W. 2012. J. Mater. Chem., 22: 9774–9781. [14] Li, A., Sun, H.-X., Tan, D.-Z., Fan, W.-J., Wen, S.-H., Qing, X.-J., Li, G.-X., Li, S.-Y., & Deng, W.-Q. 2011. Energy Environ. Sci., 4: 2062–2065. [15] Onda, T., Shibuichi, S., Satoh, N., & Tsujii, K. 1996, 12: 2125–2127. [16] Sun, T., Feng, L., Gao, X., & Jiang, L. 2005. Acc. Chem. Res., 38: 644–652. [17] Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., & Zhu, D. 2002. Adv. Mater., 14: 1857–1860. [18] Ganesh, V. A., Raut, H. K., Nair, A. S., & Ramakrishna, S. 2011. J. Mater. Chem., 21: 16304–16322. [19] Søgaard, E., Andersen, N. K., Taboryski, R., & Smistrup, K. 2012. In: Nanotech 2012. [20] Gao, S. J., Shi, Z., Zhang, W. Bin, Zhang, F., & Jin, J. 2014. ACS Nano, 8: 6344–6352. [21] Notsu, H., Kubo, W., Shitanda, I., & Tatsuma, T. 2005. J. Mater. Chem., 15: 1523–1527. [22] Qian, B., & Shen, Z. 2005, 21: 9007–9009. [23] Yang, J., Zhang, Z., Men, X., Xu, X., & Zhu, X. 2010. Colloids Surfaces A Physicochem. Eng. Asp., 367: 60–64. [24] Xu, X., Zhang, Z., & Liu, W. 2009. Colloids Surfaces A Physicochem. Eng. Asp., 341: 21–26. [25] Yang, J., Zhang, Z., Men, X., & Xu, X. 2009. Appl. Surf. Sci., 255: 9244–9247. [26] Lu, Y., Sathasivam, S., Song, J., Crick, C. R., Carmalt, C. J., & Parkin, I. P. 2015. Science (80-. )., 347: 1132–1135. [27] Chen, K., Zhou, S., Yang, S., & Wu, L. 2015. Adv. Funct. Mater., 25: 1035–1041. [28] Zhou, H., Wang, H., Niu, H., Gestos, A., & Lin, T. 2013. Adv. Funct. Mater., 23: 1664–1670. [29] Xu, L., Karunakaran, R. G., Guo, J., & Yang, S. 2012. ACS Appl. Mater. Interfaces, 4: 1118–1125. [30] Zhou, H., Wang, H., Niu, H., Gestos, A., Wang, X., & Lin, T. 2012. Adv. Mater., 24: 2409–2412. [31] Liu, K., Cao, M., Fujishima, A., & Jiang, L. 2014. Chem. Rev., 114: 10044–10094. [32] Darmanin, T., & Guittard, F. 2013. Soft Matter, 9: 5982–5990. [33] Begley, T. H., White, K., Honigfort, P., Twaroski, M. L., Neches, R., & Walker, R. A. 2005. Food Addit. Contam., 22: 1023–1031. [34] Prevedouros, K., Cousins, I. T., Buck, R. C., & Korzeniowski, S. H. 2006. Environ. Sci. Technol., 40: 32–44. [35] Zhang, X., Cai, S., You, D., Yan, L., Lv, H., Yuan, X., & Jiang, B. 2013. Adv. Funct. Mater., 23: 4361–4365. [36] Alexander, S., Eastoe, J., Lord, A. M., Guittard, F., & Barron, A. R. 2015. ACS Appl. Mater. Interfaces, 8: 660–666. [37] Park, E. J., Sim, J. K., Jeong, M.-G., Seo, H. O., & Kim, Y. D. 2013. RSC Adv., 3: 12571–12576. [38] Kulkarni, S. A., Ogale, S. B., & Vijayamohanan, K. P. 2008. J. Colloid Interface Sci., 318: 372–379. [39] Ogihara, H., Xie, J., & Saji, T. 2013. Colloids Surfaces A Physicochem. Eng. Asp., 434: 35–41. [40] Wu, L., Zhang, J., Li, B., & Wang, A. 2013. J. Mater. Chem. B, 1: 4756–4763. [41] Li, L., Li, B., Dong, J., & Zhang, J. 2016. J. Mater. Chem. A, 4: 13677–13725.
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2018.3.5 Physical chemistry Thermodynamic Parameters for solvation of Copper sulphate in (ethanol-water) mixed solvent at different temperatures Thermodynamic Parameters for solvation of Copper sulphate in (ethanol-water) mixed solvent at different temperatures Rashad Radwa Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt Gomaa Esam Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt 01 05 2018 1 2 81 89 24 01 2018 25 04 2018 Copyright © 2018, Sami Publishing Company (SPC). 2018 https://https:// https://www.ajnanomat.com/article_61427.html

The measurements of copper sulphate conductance have happened in binary mixed solvent with ethanol in different mass fraction 0%, 20% and 40% (W/W) (EtOH-H2O) at four different temperatures from 298.15 to 313.15o K (with a step of 5o K). The experimental data obtained by using the Fuoss-Shedlovsky extrapolation technique. All thermodynamic parameters for association were calculated. This parameters such as molar conductance (Λm), limiting molar conductance (Λ0), Walden product (Λ0 η0), ion-pair association constant (KA), the activation energy for the transport process (Ea) and also the standerd thermodynamic prameters for association (∆GoA, ∆HoA and ∆SoA). Although we studied the effect of hydrogen bond formation in solution. The results estimated show that the association constant was increased with increasing temperature while the molar conductance and the limiting molar conductance values were decreased. Furthermore, all the association constant values were increased indicating that the association process is endothermic.

Limiting molar conductance Ion-pair association Constants Binary Mixed solvents Walden product Association constant
Zhang S, Ma P, Zhai, Y Chen, W (2015) Rare Met. 34: 873–876. Shunquan Z, Weirong, S Qian, W Haitao, Y Baoguo (2007) Chemical industry and engineering progress 26 207. Bo, T Chuan-wei, Y Qing, Q Hua, L Fu-hui (2003) Battery Bimonthly 4 023. Haldar, P Das,(2005) J. Mol. Liq. 130: 29–33. Tsierkezos, N G, Molinou (2007) J. Solution Chem. 36: 153–170. El-Dossoki (2007) J. Mol. Liq. 151: 1–8. Dash, U N, Mahapatra, J R, Lal (2006) J. Mol. Liq. 124: 13–18. Roy, M N, Gurung B B, Dakua,(2006) "International journal of thermo physics. 27: 1539-1550. Tsierkezos, N G, Molinou (2006) J. Chem. Thermodyn. 38: 1422–1431. Bešter-Rogač, M Hauptman, N Barthel, (2007) J. Mol. Liq. 131: 29–35. Gomaa, E A Tahoon, M (2016) J. Mol. Liq. 214: 19–23. Gomaa, E A Tahoon, M A Shokr. (2016) Chemical Data Collections 34: 58–67 Klofutar, C, Šegatin,(2007) J. Solution Chem. 36: 879–889. El-Dossoki, (2011) J. Mol. Liq. 158: 18–22. Partin, Lee 2015 "The Blues: Part 2". skylighter. Skylighter.Inc. Hoffman, R V (2001). Copper(II) Sulfate, in Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons Fuoss, R.M., Shedlovsky, (1949) J. Am. Chem. Soc. 71 1496–1498. Mohsen-Nia, M., Amiri, H., Jazi,(2010) J Solution Chem.39 701–708. Khattab I S, Bandarkar F, Fakhree M A A Jouyban (2012) J. Chem. Eng. 29 812–817. Stokes R H, Mills R 1965 In: Viscosity of Electrolytes and Related Properties, 1st edn. Pergamon Press, London. Wypych-Stasiewicz, A., Szejgis, A., Chmielewska, A., Blad,(2007) J. Mol. Liq.130 34. Gilead E, Kirowa-Eisner (2006) Electro. Chimica Acta 51 6003. Rahimi-Nasrabadi M, Ahmadi F, Pourmortazavi S M, Ganjali M R, Alizadeh (2009) J. Mol. Liq. 144 97–101. Lind J r, Zwolenik J J, Fuoss R M (1959) J. Am. Chem. Soc.81 1557. Onsager, (1927) Z. Phys 28: 277–298. Singh, N M (2016) J of Chemistry, 28: 49-60. El-Dossoki, (2008) J. Mol. Liq. 142 72–77. S A Baker, G G Birch,(1999) Food Chem. 67: 146–241. Fuoss R M, Shedlovsky T (1949) J. Am. Chem. Soc. 71:1496-1498 Walden P, 1920 Über Die Ionendurchmesser in Nichtwässerigen Lösungen. Rao, KC, Subha M C S (1989) Indian J. Chem. 28: 102–105. Szejgis, A, Bald A, Gregorowicz J, Kinart C M (1997) Phys. Chem. Liq. 34: 189-196 Gomaa E A, (1985) J. Thermochimica acta, 91: 235-241 Szejgis A, Bald A, Gregorowicz, (1999) J Zurada, M, Mol. Liq. 79 123-136. Ezz-Elarab, Shehata M (1992) J. Sci. Phys. Sci. 4 (1) 51–55. Nacollas, G H 1966 In: Interactions in Electrolyte Solutions, 1st edn. Elsevier, Amsterdam.
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2018.3.6 Applied Chemistry Advanced Materials for Energy Storage Devices (Review) Advanced Materials for Energy Storage Devices (Review). Isah Shehu Delaware State University, Dover, De 19901 01 05 2018 1 2 90 103 06 03 2018 23 04 2018 Copyright © 2018, Sami Publishing Company (SPC). 2018 https://https:// https://www.ajnanomat.com/article_61451.html

This review examines high performing energy storage devices for high-power applications including heavy electric vehicles, energy-efficient cargo ships and locomotives, aerospace and stationary grid system. Such devices require systematic design and fabrication of composite nanostructured carbon-based material and conductive polymers. Electrochemical capacitors based on nanostructured carbon can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. Composite device of pseudo-capacitive polymeric materials and nanostructured carbon with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries without compromising its specific power density, high capacitance and lifetime cycling stability. Energy storage devices’ widespread applications in industrial, hybrid electric vehicles and commodity electronics could be facilitated through careful selection of electrolyte-electrode system. Good understanding of charging mechanism is key to improving device’s performance. Charging mechanism includes sequential ion desolations in pores smaller than the solvated ions through ion exchange or ion adsorption. This leads to higher capacitance for such storage devices. This has opened the door to designing advanced high-energy density devices with fast charging and discharging times using a variety of electrolytes and nanostructured carbon-polymer composite.

: Electrochemical capacitors Pseudo-capacitors Energy density Power Density Conducting polymers
1. Bruce PG, Freunberger SA, Hardwick J, Tarascon JM (2012) Nature Materials 1: 19-29. 2. Chrittenden JC, White HS (2004) J Am Chem Soc 132: 4503-4505. 3. Novoselov KS (2004) Electric field effect in atomically thin carbon films. Science.306: 666–669. 4. RinaldoR,Alberto V, Stefano P, Bruno S (2015).Nature Materials.271-279. 5. Jintao Z, Zhenhai X, Liming D (2015) Science.1: 1-19. 6. Larche D, Tarascon, JM (2015). Nature Materials.14, 271-279. 7. Deschamps M, Gilbert E, Azais P, Raymundo-Pinero E,Ammar M, Simon P, MassiotD,Baeguin F (2013) Nature Materials. 12: 351-358. 8. Magasinski A, Dixon P, Hertzber B, Kvit A, Ayala J, Yushin G (2010). Nature Materials.9: 353-358. 9. Goodenough JB,Park KS (2013) . J. Am. Chem. Soc.135: 1167-1176. 10. Huskinson Bl (2014). Nature Materials.505: 195–198. 11. Wu Z, Sun Y, Yuan-Zhi TY, Yang S, Feng X,Mullen K (2012) J. Am. Chem. Soc.134: 19532−19535. 12. Wu G, Tani P, Wang D, Zhe LZ, Lu PL, Ying HY, Caifeng WC (2017) NatureMaterials.7: 1-8. 13. Forse AC, Merlet C, Griffin JM, Grey CP (2016) J. Am. Chem Soc.138: 5731-5744. 14. Wang H, Forse AC, Griffin JM, Trease NM, Trognko L, Tabern P, Simon P, GreyCP (2013) J. Am. Chem. Soc. 135: 18968-18980. 15. Merlet C, Rotenberg B, Madden PA, Taberna P, Simon P, Gogotsi Y,Salanne M (2012) Nature Materials. 11: 306-310. 16. Huisheng P (2007) J. Am. Chem. Soc.132: 14825-14833. 17. Simon P,Gogotsi Y (2008) Nature Materials.7: 845-854. 18. Zhu Y (2011). Science.332: 1537-1541. 19. Zabula AV, Filatov AS, Spisak SN, Rogachev AY, Petrukhina MA (2011). Science. 333, 1008. 20. Minkee CI, Ryong R (2003) Nature Materials.2: 473-476. 21. Melet C (2012) Nature Materials.11: 306-310. 22. Patrice S, Yury G (2008) Nature Materials. 7: 845-854. 23. Li XL, Wang HL, RobinsonJT, Sanchez H, Diankov G,Dai HJ (2009) J. Am. Chem. Soc.131: 15939. 24. Shi W, Zhao T, Xi J, Wang D, Shuai Z (2015) J. Am. Chem. Soc. 137: 12929−12938. 25. Cao F, Zhao M, Yu Y, Chen B, Huang Y, Yang J, Cao X, Lu Q, Zhang X, ZhangZ, Tan C, Zhang H (2016) J. Am. Chem. Soc.138: 6924-6927. 26. Homes CC, Vogt T (2013) Doping for superior dielectrics. Nature Materials.12: 782-783. 27. Hu E, Liu Y, Withers RL, Frankcombe TJ, Noren L Snashall A, Kitchin M, Smith P, Gong B, Chen H Schiemer J, Brink F,Wong-Leng J (2013) Nature Material 12: 821-826. 28. Zhang C,Gamble S, Ainsworth D, Slawin AMZ, Andreev YG, Peter GB (2009) Nature Materials.8: 580-584. 29. Croce F, Appetecchi G B,Persi L,Scrosati B (1998) Nature Materials.394: 456–458. 30.Wang X, Thomas A, Takanabe A, Xin G, Carlsson JM, Domen K, Antonietti MA (2009) Nature Materials.8:76-80. 31. Lee K, Cho S, Park SH, Heeger AJ, Lee CW, Lee SH (2006) Nature materials.441:65−68. 32. Linic S, Christopher P, Ingram DB (2011) Nature Materials. 10: 911-921. 33. Qinqin Z, Gaoquan S (2016) J. Am. Chem. Soc.138: 2868−2876. 34. Bubnova O, Khan ZU, Wang H, Braun S, EvansDR, Fabretto M, Hojati-Talemi P, Dagnelund D, Arlin JB, 35. Geerts YH (2014) Nature Material.13: 190−194. 36. Largeot C, Portet C,Chmiola J, Taberna PL, Gogotsi Y,Simon,P (2008) J. Am.Chem.Soc.130: 2730−2731. 37. Vlad A, Balducci A (2017) Nature Materials. 16: 161. 38. Kim, EG, Bredas JL (2008). J. Am.Chem. Soc.130:16880−16889. 39. Gogotsi, Y, Simon P (2011) Science.334: 917–918. 40. Miller JR., OutlawRA, Hollowa BC (2010) Science. 329: 1637–1639. 41. Kosynkin DV (2009) Nature Materials.458:872–876. 42. Geim AK, NovoselovKS (2011) Nature Materials. 6:183–191. 43. Yang XW, Cheng C, WangYF, Qiu L, Li D (2013) Science.341: 534–537. 44. Arico AS, Bruce P, Scrosati B,TarasconJM, Schalkwijk WV (2005) NatureMaterials. 4: 366–377. 45. Tour JM (2014) Nature Materials.13: 545-546. 46. Michel AI, Frank E, Douglas RM, Hiroyuki O, Bruno S (2009) Nature Materials.8: 621-629.