Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2020.2.1 Original Article Electrochemical reduction of CO2 using cuprous oxide particles supported on carbon paper substrate Electrochemical reduction of CO2 using cuprous oxide particles supported on carbon paper substrate Khan Fahd Sikandar Department of Advance Interdisciplinary Studies, School of Engineering, University of Tokyo, Japan Sugiyama Masakazu Department of Advance Interdisciplinary Studies, School of Engineering, University of Tokyo, Japan Fujii Katsushi Nakamura Laboratory, Research Cluster for Innovation, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan Nakano Yoshiaki Department of Electrical Engineering, School of Engineering, University of Tokyo, Japan 01 04 2020 3 2 93 102 03 06 2019 31 10 2019 Copyright © 2020, Sami Publishing Company (SPC). 2020 https://www.ajnanomat.com/article_96793.html

Electrochemical reduction of CO2 is so important in mitigating the greenhouse related environmental concerns. Recently, oxidized forms of metals instead of pure metals have gained a great deal of attention due to the difference in product selection between the two classes of electrode materials. Since copper has been widely used in producing carbon-intensive products, various studies have been dedicated to evaluate its oxidized form. In this research study, we focused on using cuprous oxide particles supported on hydrophobic carbon paper substrate. The structure of the carbon paper provides unique reaction sites while the micron-sized particles can help to provide new insight about using smaller surface area to volume ratio as compared to previous reports on oxidized copper nanoparticles. Formic acid, ethylene, and CO were produced as a result of our experiments which show improved product selection compared with the pure copper nanoparticles. The potential and time dependence of these products are presented in this study along with a discussion on the origin of CO2 reduction.

CO2 reduction Electrocatalysis Cuprous oxide Ethylene Formic acid
[1]. Kumar B., Brian J., Atla V., Kumari S., Bertram K., White R., Spurgeon J. Catal. Today, 2016, 270:19 [2]. Hori Y., Modern Aspects of Electrochemistry, Springer, New York, 2008, pg 89 [3]. Kuhl K., Cave E., Abram D., Jaramillo T. Energy Environ Sci., 2008, 5:7050 [4]. Luna P.D., Quintero-Bermudez R., Dinh C., Ross M.B., Bushuyev O.S.,Todorovic P., Regier T., Kelley S., Yang P., Sargent E. Nat. Catal., 2018, 1:103 [5]. Lee C.W., Yang K.D., Nam D.H., Jang J.H., Cho N.H., Im S.W., Nam K.T. Adv. Mater., 2018, 30:1704717 [6]. Chen C., Sun X., Lu L., Yang D., Ma J., Zhu Q., Qian Q., Han B. Green Chem., 2018, 20:4579 [7]. Seunghwa L., Dahee K., and Jaeyoung L., Angew. Chem. Int. Ed., 2015, 54:14701 [8]. Frese K.W. Journal of Electrochemical Society, 1991, 138:3338 [9]. Le M., Ren M., Zhang Z., Sprunger P. T., Kurtz R. L., Flake J.C. Journal of the Electrochemical Society, 2011, 158:45 [10]. Li C.W., Kanan M.W. Journal of the American Chemical Society, 2012, 134:7231 [11]. Wang W., Ning H., Yang Z., Feng Z., Wang J., Wang X., Mao Q., Wu W., Zhao Q., Hu H., Song Y., Wu M. Electrochimica Acta, 2019, 306:360 [12]. Tan X., Yu C., Zhao C., Huang H., Yao X., Han X., Guo W., Cui S., Huang H., Qiu J. ACS Appl. Mater. Interfaces, 2019, 11:9904 [13]. Lee S., Ocon J. D., Son Y., Lee J. J. Phys. Chem. C., 2015, 119:4884 [14]. Kim D., Lee S., Ocon J. D., Jeong B., Lee J. K., Lee J., Phys. Chem. Chem. Phys., 2015, 17:824 [15]. Lum Y., Ager J.W. Angew. Chem. Int. Ed., 2018, 57:551 [16]. Eilert A., Cavalca F., Roberts F.S., Osterwalder J., Liu C., Favaro M., Crumlin E.J., Ogasawara H., Friebel D., Pettersson L.G., Nilsson A. J. Phys. Chem. Lett., 2018, 8:285 [17]. Burdyny T., Smith W.A. Energy Environ. Sci., 2019, 12:1442 [18]. Kas R., Kortlever R., de Wit P., Milbrat A., Luiten-Olieman M., Benes N., Koper M., Mul G. Nature Communications, 2016, 7:10748 [19]. Hana X., Wang M., Linh M., Bedford N., Woehl T., Thoi S. Electrochimica Acta, 2019, 297:545 [20]. Lee S., Kim D., Lee J. Angew. Chem. Int. Ed. Engl., 2015, 54:14701 [21]. Ren D., Ang BS-H., Yeo B.S. ACS Catalysis, 2016, 6:8239 [22]. Li C.W., Ciston J., Kanan M.W. Nature, 2014, 508:504 [23]. Kim D., Kley C.S., Li Y., Yang P. PNAS., 2017, 114:10560. [24]. Ning H., Mao Q., Wang W, Yang Z., Wang X., Zhao Q., Song Y., Wu M. Journal of Alloys and Compounds, 2019, 785:7 [25]. Dang T., Le, T, Blanc E.F, Dang M. Adv. Nat. Sci. Nanosci. Nanotechnol., 2011, 2:15009 [26]. John W., Ayi A., Chinyere A., Providence A., Bassey I. Advanced Journal of Chemistry-Section A., 2019, 2:175 [27]. Gomaa E., Abdel H., Mahmoud M., El Kot D. Adv. J. Chem. A., 2019, 2:1 [28]. Ayesha K., Audi R., Rafia Y., Ren C. Int. Nano Lett., 2016, 6:21 [29]. Sachin S., Ashok B., Chandrashekhar M. J. Nano Electron. Phys., 2016, 8:01035 [30]. Chang T., Liang R., Wu P. Chen J.Y., Hsieh Y.C. Material Letters, 2009, 63:1001 [31]. Hori Y., Murata A., Takahashi R., Suzuki S. Chem. Lett., 1987, 16:1665 [32]. Hori Y., Murata A., Takahashi R. J. Chem. Soc., Faraday Trans., 1989, 85:2309 [33]. Bugayonga J., Griffin G.L. ECS Trans., 2013, 588:81 [34]. Wanatabe M., Shibata M., Kato A., Azuma M., Sakata T. J. Electrochem. Soc., 1991, 138:3382 [35]. Kim J.Y., Rodriguez J.A., Hanson J.C., Frenkel A.I., Lee P. J. Am. Chem. Soc., 2003, 125:10684 [36]. Maimaiti Y., Nolan M., Elliott S. Phys. Chem. Chem. Phys., 2014, 16:3036 [37]. Kooti M., Matouri L. Transaction F: Nanotechnology, 2010, 17:73 [38]. Zhang X., Lu X., Shen Y., Han J., Yuan L., Gong L., Xu Z., Bai X., Wei M., Tong Y., Gao Y., Chen J., Zhou J., Wang L.Z. Chem. Commun., 2011, 47:5804 [39]. Mandal L., Yang K.R., Motapothulav M.R,. Ren D., Lobaccaro P., Patra A., Sherburne M., Batista V.S., Yeo B.S., Ager J.W., Martin J. Venkatesan T. ACS Appl. Mater. Interfaces, 2018, 10:8574 [40]. Jeremy T., Chuan S., Etosha R., Toru H., David N., Kendra P., Christopher H., Nørskov J., Jaramillo T. ACS Catal., 2017, 7:4822 [41]. Peterson A.A., Abild-Pedersen F., StudtF., Rossmeisl J., Nørskov J. Energy Environ. Sci. 2010, 3:1311 [42]. Shin H.S., Song J.Y., Jiang Y., Mater. Lett. 2009, 63:39 [43]. Hori Y., Takahashi I., Koga O, Hoshi N. Journal of Physical Chemistry, 2002, 106:15 [44]. Baturina O., Lu Q., Padilla M., Le X., Li W., Serov A., Artyushkova K., Atanassov P., Xu F., Epshteyn A., Brintlinger T., Schuette M., Collins G. ACS Catal., 2014, 4:3682 [45]. Reske R., Mistry H., Behafarid F., Cuenya B.R., Strasser P. J. Am. Chem. Soc., 2014, 136:6978 [46]. Ko C., Lee W. Surf. Interface Anal., 2010, 42:1128 [47]. Meenesh R., Singha L., Clarka, B., Bella A. PNAS, 2015, 112:6111
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2020.2.2 Original Article Adsorption of TNT on the surface of pristine and N-doped carbon nanocone: A theoretical study Adsorption of TNT on the surface of pristine and N-doped carbon nanocone: A theoretical study Jalali Sarvestani Mohammad Reza Young Researchers and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran Ahmadi Roya Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran 01 04 2020 3 2 103 114 22 09 2019 10 01 2020 Copyright © 2020, Sami Publishing Company (SPC). 2020 https://www.ajnanomat.com/article_101247.html

In this research, the performance of the carbon nanocone as an adsorbent and a sensing material for the removal and detection of trinitrotoluene (TNT) was investigated using the density functional theory. The atomic structures of TNT and its complexes with carbon nanocone were optimized geometrically. Infra-red (IR) and frontier molecular orbital computations were employed to evaluate the interaction of TNT with the carbon nanocone. The obtained negative values of adsorption energies, Gibbs free energy changes, adsorption enthalpy variations and great values of thermodynamic equilibrium constants revealed that the interaction of the TNT with carbon nanocone was exothermic, spontaneous and experimentally feasible. The effect of the nitrogen doping and temperature on the adsorption process was also evaluated and the results indicated that TNT interaction with N-doped carbon nanocone was stronger than that of pristine one. In addition, 298 K was the optimum temperature for the adsorption process. The specific heat capacity values revealed that the heat sensitivity was declined tangibly after the TNT adsorption on the surface of carbon nanocone. Besides, the frontier molecular orbital parameters such as bandgap, electrophilicity, maximum transferred charge proved that the carbon nanocone could be utilized as an excellent sensing material for the construction of new electrochemical sensors for TNT determination. Some structural and energetic features were also discussed in details.

TNT carbon Nanocone Adsorption Density functional theory explosives
[1]. Yang Q., Liang Y., Zhou T., Shi G., Jin L. Electrochem Commun., 2008, 10:1176 [2]. Carrion C.C., Simonet B.M., Valcarcel M. Anal Chim Acta., 2013, 792:93 [3]. Heiss C., Weller M.G., Niessner R. Anal Chim Acta., 1999, 396:309 [4]. Zimmermann Y., Broekaert J.A.C. Anal Bioanal Chem., 2005, 383:998 [5]. Tredici I., Merli D., Zavarise F., Profumo A. J Electroanal Chem., 2010, 645:22 [6]. Hundal L.S., Singh J., Bier E.L., Shea P.J., Comfort S.D., Powers W.L. Environ Pollut., 1997, 97:55 [7]. Alizadeh T., Zare M., Ganjali M.R., Norouzi P., Tavana B. Biosens Bioelectron., 2010, 25:1166 [8]. Ercag E., Uzer A., Apak R. Talanta., 2009, 78:772 [9]. Won W.D., Disalvo L.H., James N.G. Appl Environ Microbiol., 1976, 31:576 [10]. Saravanan N.P., Venugopalan S., Senthilkumar N., Santhosh P., Kavita B., Prabu H.G. Talanta., 2006, 69:656 [11]. Ahmadi R., Ebrahimikia M. Phys Chem Res., 2017, 4:617 [12]. Yu X., Tverdal M., Raaen S., Helgesen G., Knudsen K.D. Appl Surf Sci., 2008, 255:1906 [13]. Mohasseb A. Int J New Chem., 2019, 6:215 [14]. Vessally E., Behmagham F., Massoumi B., Hosseinian A., Edjlali L. Vacuum., 2016, 134:40 [15]. Baei M.T., Peyghan A.A., Bagheri Z. Struct Chem., 2013, 24:1099 [16]. Ahmadi R., Jalali Sarvestani M.R., Taghavizad R., Rahim N. Chem Methodol., 2020, 4:68 [17]. Razavi R., Eghtedaei R., Rajabzadeh H., Najafi M. Inorg Chem Commun., 2018, 94:85 [18]. Rastegar S.F., Soleymanabadi H., Bagheri Z. J Iran Chem Soc., 2015, 12:1099 [19]. Yu X., Raeen S. J Appl Phys., 2015, 118:10 [20]. Jalali Sarvestani M.R., Ahmadi R. J Water Environ Nanotechnol.,2019, 4:48 [21]. Parlak C., Alver O. J Mol Struct., 2019, 1198:126881 [22]. Todde G., Jha S.K., Subramanian G., Shukla M.K. Surf Sci., 2018, 668:54 [23]. Van B.N., Nikolaeva E.V., Shamov A.G., Khrapkovskii G.M., Tsyshevsky, R.V. ‏Int J Mass Spectrom., 2015, 392:7 [24]. Enlow M.A. J Mol Graph Model., 2012, 33:12 [25]. Hang G.Y., Yu W.L., Wang T., Wang J.T. Comput Mater Sci., 2019, 156:77 [26]. Sriyab S., Lat K.J., Prompinit P., Wolschann P., Hannongbua S., Suramitr S. J Lumin., 2018, 203:492 [27]. Ghosh P., Das J., Basak A., Mukhopadhyay S.K., Banerjee P. Sens Actuators B Chem., 2017, 251:985 [28]. Anbu V., Vijayalakshmi K.A., Karunathan R., Stephen A.D., Nidhin P.V. Arab J Chem., 2019, 12:621 [29]. Jaridann M., Roy S., Rachid H.A., Lussier L.S. J Hazard Mater., 2010, 176:165 [30]. Hernández-Riveraa S.P., Castillo-Chará J. Vib Spectrosc., 2010, 53:248 [31]. Gaussian 16, Revision C.01, Frisch M. J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V.Petersson,, G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J., Gaussian, Inc., Wallingford CT, 2016 [32]. Ghiasi R., Kanani F.A.K., Asian J. Nanosci. Mater., 2018, 1:234 [33]. Ghiasi R., Bharifar H., Hosseinzade S., Zarinfard M.A., Hakimyoun A.H., J. Appl. Chem. Res., 2014, 8: 29 [34]. Ghiasi R., Fashami M.Z., Hakimioun A.H., J. Theor. Comput. Chem., 2014, 13:123 [35]. Alavi H., Ghiasi R., Ghazanfari D., Akhgar M.R., Rev. Roum. Chim., 2014, 59: 883 [36]. Alavi H., Ghiasi R., J. Struct. Chem., 2017, 58: 30 [37]. Ghiasi R., Sadeghi N., J. Theor. Comput. Chem., 2017, 16: 1750007 [38]. Kazemi Z., Ghiasi R., Jamehbozorgi S., J. Struct. Chem., 2018, 59: 1044
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2020.2.3 Short communication Biosynthesis of calcium oxide nanoparticles using Ocimum sanctum (Tulsi) leaf extracts and screening its antimicrobial activity Biosynthesis of calcium oxide nanoparticles using Ocimum sanctum (Tulsi) leaf extracts and screening its antimicrobial activity Gurav Vijay L. Department of Chemistry K.C. College,Charchgate, Mumbai Maharashtra (India)-400020 Samant Rajesh A. Department of Chemistry K.C. College,Charchgate, Mumbai Maharashtra (India)-400020 Manjare Satish B. Department of Chemistry, Ratnagiri Sub-centre, University of Mumbai P-61 MIDC Mirjole Ratnagiri (M. S.) India 415639 Patil Urmila K. Department of Chemistry, Ratnagiri Sub-centre, University of Mumbai P-61 MIDC Mirjole Ratnagiri (M. S.) India 415639 Solkar Sana R. Department of Chemistry, Ratnagiri Sub-centre, University of Mumbai P-61 MIDC Mirjole Ratnagiri (M. S.) India 415639 Moghe Shivani S. Department of Chemistry, Ratnagiri Sub-centre, University of Mumbai P-61 MIDC Mirjole Ratnagiri (M. S.) India 415639 01 04 2020 3 2 115 120 28 07 2019 10 01 2020 Copyright © 2020, Sami Publishing Company (SPC). 2020 https://www.ajnanomat.com/article_101257.html

In this study, waste egg scale and inexpensive biowaste were employed to remove calcium ions. The potential of egg scales for removal of calcium ions from aqueous solutions was investigated. Preparation of calcinated egg shell powder, tulsi leaf extract, nanoparticle, and growth of bacteria were done to study biosynthesis of calcium oxide nanoparticle onto waste egg scales. Development of green nanotechnology has attracted a great deal of attention from researchers towards eco-friendly biosynthesis of nanoparticle. In this study, biosynthesis of stable calcium nanoparticles was conducted using tulsi (Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized using X-ray diffraction (XRD) analysis. The results revealed that, O.sanctum leaf extract can reduce Ca-ions into calcium oxide nanoparticles within 40 min of reaction time. It was found that, this method can be used for rapid and eco-friendly biosynthesis of stable calcium oxide nanoparticles with the size ranging from 40 to 70 nm.

Calcium oxide Ocimum sanctum Antimicrobial activity
[1]. Mansoori G.A., Soelaiman T.A.F. Nanotechnology, 2005, 2:1 [2]. Rajput N. International Journal of Advances in Engineering & Technology, 2015, 7:1806 [3]. Kulkarni V.D., Kulkarni P.S. International Journal of Chemical Studies, 2013, 1:1 [4]. Tsai W.T., Yang J.M., Lai C.W., Cheng Y.H., Lin C.C., Yeh C.W. Bioresour Technol., 2006,97:488 [5]. Park H.J., Jeong S.W., Yang J.K., Kim B.G., Lee S.M. Journal of Environmental Sciences, 2007, 19:1436 [6]. Turxer-graff B.Y.R. J. Gen. Microbiol., 2019, 7:31
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2020.2.4 Nanochemistry In vitro bio-synthesis of silver nanoparticles using flower extract of parasitic plant Cascuta reflexa and evaluation of its biological properties In vitro bio-synthesis of silver nanoparticles using flower extract of parasitic plant Cascuta reflexa and evaluation of its biological properties S.Shaikh Nida Department of Chemistry, Govt.Vidarbha Institute of Science and Humanities, Amravati-444604, India S.Shaikh Rahimullah Department of Chemistry, Govt.Vidarbha Institute of Science and Humanities, Amravati-444604, India Kashid Sahebrao Department of Chemistry, Institute of Science, Homi Bhabha State University, Mumbai-400032, Mumbai 01 04 2020 3 2 121 130 24 06 2019 21 01 2020 Copyright © 2020, Sami Publishing Company (SPC). 2020 https://www.ajnanomat.com/article_102132.html

This paper deals with the rapid photosensitized biosynthesis of silver nanoparticles using aqueous extract of flowers of Cascuta reflexa. The reaction was carried out in ambient sunlight. The mixing of aqueous solution of silver nitrate and the flower extract shows color transitions from yellow to light brown and finally dark brown colour, indicating the formation of silver nanoparticles. As synthesized the nanoparticles were characterized by various techniques such as UV visible spectroscopy, XRD, FT-IR, TEM. The TEM analysis revealed that the particles were predominantly spherical and size ranging from 20 to 50 nm. The antioxidant properties were tested by FR AP assay method. The antibacterial properties of synthesized Nanoparticles were tested against pathogens such. P.aeruginosa, E.coli, B. subtilus and S.aureus.

Silver nanoparticles Photosensitized biosynthesis aqueous extract of flowers of Cascuta reflexa antimicrobial testing FRAP assay
[1]. Rautela A., Rani J., Debnath M. Journal of Analytical Science and Technology, 2019, 5:10 [2]. Ramteke C., Chakrabarti T., Sarangi B.K., Pandey R.A., Journal of Chemistry Materials Letters, 2013, 67:91 [3].Ahmed S., Ikram S. Open Access Journal, 2014, 6:1000309 [4]. Banasiuk R., Krychowiak M., Swigon D., Tomaszewicz W., Michalak A., Chylewska A., Ziabka M., Lapinsk M., Koscielsk B. Arabian Journal of Chem., 2017, 13:1415 [5]. Singh A., Jain D., Upadhyay M.K., Khandelwala N., Verma H. J. Nanomaterials and Biostructures, 2019, 5:483 [6]. Suwan T., Wanachantararak P., Khongkhunthian S. Drug Discoveries & Therapeutic., 2018,12:259 [7]. Ciesla L., Kowalska I., Oleszek W., Stochmal A. Phytochem Anal., 2013, 24:47 [8]. Kharissova O.V., Dias H.V., Kharisov B.I., Perez B.O. Trends Biotechnol., 2013, 31:240 [9]. Saini P., Mithal R., Menghanu E. International Journal of Scientific and Engineering Research, 2015, 6:25 [10]. Rai D.K., Sharma V., Pal K., Gupta R.K. International Journal., 2016, 3:428 [11]. Dubey M., Bhadauria S., Sharma V.K., Katoch V.M. International Journal of Green Nanotechnology., 2012, 4:174 [12]. Pathak R.S., Hendre A.S., Der Pharmacia letter., 2015, 7:313 [13]. Lakshmanan G., Sathiyaselan A., Kalaichelvan P.T., Murugesank., Karbal International Journal of Modern Science., 2018, 4:61 [14]. Kothekar D. International Journal of Pharma and Bioscieces, 2017, 8:202 [15]. Saxena A., Tripathi R.M., Zafar F., Singh P. Materials Letters, 2012, 67:91 [16]. Shaikh R., Syed I. Asian Journal of Green Chemistry, 2019, 3:17 [17]. Pavani K.V., Gayathramma K., Banerjee A., Shah S. American J. of Nanomaterials, 2013, 1:5 [18]. Pagadala S.R., Redappa M., Harini S.S., Tenkayala S.R., Gangadhara R. Journal of Drug Delivery and Therapeutics, 2018, 8:301 [19]. Duraisamy K., Jung H.H.,Whoa S.P., Seok M.L., Wahab R., Arabian Journal of Chemistry., 2014, 12:1722 [20]. Arun S., Saraswathi U., Singaravelu. International J. of Pharmaceutical Science, 2014, 3:54 [21]. Lin P.C., Lin S., Wang, P.C. Biotechnol. Adv., 2016, 32:711 [22]. Raut R.W., Kolekar N.S., Lakkakula J.R., Mendhulkar V.D., Sahebrao B.K. Nano Lett., 2010, 2:106 [23]. Solomani R., Montemor A.F., Rinaldi B.G., Nanotechnology Sci. And Applications., 2017, 10:115 [24]. Kim S.H., Lee S.H., Ryu D.S., Choi S.J., Lee D.S. Korean J. of Microbial and Biotechnology, 2011, 39:77 [25]. Patil S., Sivaraj R., Venckatesh R., Vanathi P., Rajiv P. International Journal of Current Research., 2015,7:21539 [26]. Ponaruselvam S., Paneerselvam C., Murugan K., Aarthi N., Kalimuthu K., and Thangamani S. Don Asian Pacific Journal of Tropical Biomedicine, 2012, 2:574 [27]. Selvi K.V., SivaKumar T. International Journal of Current Research in Chemistry and Pharmaceutical Sciences, 2014, 1:105
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2020.2.5 Organic Chemistry Efficient production of 2-amino-4H-chromenes and 14-aryl-14H-dibenzo[a, j]xanthenes catalyzed by N, N-diethyl-N-sulfoethanaminium hydrogen sulfate Efficient production of 2-amino-4H-chromenes and 14-aryl-14H-dibenzo[a, j]xanthenes catalyzed by N, N-diethyl-N-sulfoethanaminium hydrogen sulfate Pourkazemi Arezoo Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran Nasouri Zahra Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran Fakhraie Fatemeh Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran Razzaghi Alemeh Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran Parhami Abolfath Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran Zare Abdolkarim Department of Chemistry, Payame Noor University, PO Box 19395‐3697 Tehran, Iran 01 04 2020 3 2 131 137 13 06 2019 15 07 2019 Copyright © 2020, Sami Publishing Company (SPC). 2020 https://www.ajnanomat.com/article_102406.html

In this study, acidic ionic liquid N, N-diethyl-N-sulfoethanaminium hydrogen sulfate {[Et3N-SO3H]HSO4} was utilized to promote two classes of useful organic transformations under solvent-free conditions including, i) the condensation of arylaldehydes with malononitrile and 1-naphthol, leading to 2-amino-4H-chromenes, and ii) the condensation reaction of arylaldehydes with 2-naphthol to give 14-aryl-14H-dibenzo[a, j]xanthenes. The ionic liquid efficiently catalyzed the reactions, and the products were obtained in excellent yields (94-98%) within short reaction times (8-30 min).

Acidic ionic liquid N N-Diethyl-N-sulfoethanaminium hydrogen sulfate {[Et3N-SO3H]HSO4} 2-Amino-4H-chromene 14-Aryl-14H-dibenzo[a j]xanthene Solvent-free
[1]. Hasaninejad A., Zare A., Shekouhy M., Ameri Rad J.J. Comb. Chem., 2010, 12:844 [2]. Zolfigol M.A., Khazaei A., Moosavi-Zare A.R., Zare A., Kruger H.G., Asgari Z., Khakyzadeh V., Kazem-Rostami M. J. Org. Chem., 2012, 77:3640 [3]. Hajipour A.R., Rafiee F. Org Prep Proced Int., 2015, 47:249 [4]. Ghaffari Khaligh N., Mihankhah T., Johan M.R. J Mol Liq., 2019, 277:794 [5]. Han X-X., Du H., Hung C-T., Liu L-L., Wu P-H., Ren D-H., Huang S-J., Liu S-B. Green Chem., 2015, 17:499 [6]. Al Otaibi A., Deane F.M., Russell C.C., Hizartzidis L., McCluskey S.N., Sakoff J.A., McCluskey A. RSC Adv., 2019, 9:7652 [7]. Karami M., Maghsoudi M., Merajoddin M., Zare A. Asian J Nanosci Mater, 2019, 2:413 [8]. Rezayati S., Hajinasiri R., Hossaini Z., Abbaspour S. Asian J Green Chem., 2018, 2:268 [9]. Zare A., Nasouri Z. J Mol Liq., 2016, 216:364 [10]. Sajjadifar S., Mohammadi-Aghdam S. Asian J Green Chem., 2017, 1:1 [11]. Karami M., Gholami B., Hekmat Zadeh T., Zare A. Chem Methodol., 2019, 3:509 [12]. Irannejad-Gheshlaghchaei N., Zare A., Sajadikhah S.S., Banaei A. Res Chem Intermed., 2018, 44:6253 [13]. Patel A.S., Tala S.D., Nariya P.B., Ladva K.D., Kapuriya N.P. J Chin Chem Soc., 2019, 66:247 [14]. Kumar D., Reddy V.B., Mishra B.G., Rana R.K., Nadagouda M.N., Varma R.S. Tetrahedron., 2007, 63:3093 [15]. Rostami A., Atashkar B., Gholami H. Catal Commun., 2013, 37:69 [16]. Dekamin M.G., Eslami M., Maleki A. Tetrahedron., 2013, 69:1074 [17]. Baghernejad B., Heravi M.M., Oskooie H.A. J Korean Chem Soc., 2009, 53:631 [18]. Pourhasan B., Mohammadi‐Nejad A. J Chin Chem Soc., 2019, 66:1356 [19]. Safari J., Javadian L. Ultrason Sonochem., 2015, 22:341 [20]. Jin T-S., Xiao J-C., Wang S-J., Li T-S. Ultrason Sonochem., 2004, 11:393 [21]. Khafagy M.M., El-Wahas A.H.F.A., Eid F.A., El-Agrody A.M. Il Farmaco., 2002, 57:715 [22]. Mohr S.J., Chirigos M.A., Fuhrman F.S., Pryor J.W. Cancer Res., 1975, 35:3750 [23]. Martinez A.G., Marco L.J. Bioorg Med Chem Lett., 1997, 7:3165 [24]. Bianchi G., Tava A. Agric Biol Chem., 1987, 51:2001 [25]. Hafez E.A., Elnagdi M.H., Elagamey A.A., El-Taweel F.A.M. Heterocycles., 1987, 26:903 [26]. Ellis G.P. The Chemistry of Heterocyclic Compounds. Chromenes, Harmones, and Chromones. Weissberger A, Taylor EC (Eds.); John: New York, NY; Chapter II., 1977, pp 11 [27]. Naeimi H., Nazifi Z.S. Appl Catal A: Gen., 2014, 477:132 [28]. Harichandran G., Amalraj S.D., Shanmugam P. J Mol Catal A: Chem., 2014, 392:31 [29]. Mouradzadegun A., Mostafavi M.A., Ganjali M.R. J Incl Phenom Macrocycl Chem., 2018, 91:25 [30]. Mirjalili B.F., Bamoniri A., Akbari A., Taghavinia N. J Iran Chem Soc., 2011, 8:S129 [31]. Shirini F., Abedini M., Pourhasan R. Dyes Pigm., 2013, 99:250 [32]. Dashtizadeh M., Khalili M., Reghbat F., Abdi E., Bahadori Z., Sadripour Z., Zare A., Didehban K., Sajadikhah S.S. Iran Chem Commun., 2019, 7:257 [33]. Zare A., Merajoddin M., Abi F., Moosavi-Zare A.R., Mokhlesi M., Zolfigol M.A., Asgari Z., Khakyzadeh V., Hasaninejad A., Khalafi-Nezhad A., Parhami A. J Chin Chem Soc., 2012, 59:860 [34]. Ghaffari Khaligh N., Shirini F. Ultrason Sonochem., 2015, 22:397 [35]. Zolfigol M.A., Moosavi-Zare A.R., Arghavani-Hadi P., Zare A., Khakyzadeh V., Darvishi G. RSC Adv., 2012, 2:3618 [36]. Qiao Y.F., Okazaki T., Ando T., Mizoue K., Kondo K., Eguchi T., Kakinuma K. J Antibiot., 1998, 51:282 [37]. Song Y.B., Yang Y.H., You J., Liu B., Wu L.J., Hou Y.L., Wang W.J., Zhu J.X. Chem Pharm Bull., 2013, 61:167 [38]. Poupelin J.P., Ruf G.S., Blanpin O.F., Narcisse G., Ernouf G.U., Lacroix R. Eur J Med Chem., 1978, 13:67 [39]. Knight C.G., Stephens T. Biochem J., 1989, 258:683 [40]. De S., Das S., Girigoswami A. Spectrochim Acta A: Mol Biomol Spectr., 2005, 61:1821
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2020.2.6 Organic Chemistry Enantiopure asymmetrically functionalized lambda-shape nanoscaffolds: optically active ethano-bridged hybrid Tröger base analogs Enantiopure asymmetrically functionalized lambda-shape nanoscaffolds: optically active ethano-bridged hybrid Tröger base analogs Kazem-Rostami Masoud Faculty of Science and Engineering, Macquarie University, North Ryde, NSW 2109, Australia 01 04 2020 3 2 138 147 19 08 2019 12 09 2020 Copyright © 2020, Sami Publishing Company (SPC). 2020 https://www.ajnanomat.com/article_102820.html

Hybridization, functionalization, and enantioseparation of ethano-bridged Tröger base analogs have been performed. X-ray crystallographic analysis, chiral HPLC and CD spectroscopy have assigned the absolute configuration of the obtained ethano-bridged Tröger base analogs, confirming their optical purity. These optically active building blocks are readily modifiable and owing to their versatility they offer unique benefits for the growing community of molecular machinists.

Tröger base Enantioseparation Nitrogen stereocenter Chiral discriminator
[1]. Stoddart J.F. Angew. Chem. Int. Ed., 2017, 56:11094 [2]. Sluysmans D., Stoddart J.F. Proc. Natl. Acad. Sci. U.S.A., 2018, 115:9359 [3]. Kazem-Rostami M., Akhmedov N.G., Faramarzi S. J. Mol. Struct., 2019, 1178:538 [4]. Dolenský B., Elguero J., Král V., Pardo C., Valík M., Current Tröger's Base Chemistry. In Adv. Heterocycl. Chem.; Academic Press: United States, 2007; p 56 [5]. Bandara H.M.D., Burdette S.C. Chem. Soc. Rev., 2012, 41:1809 [6]. Kazem-Rostami M. Synthesis, 2017, 49:1214 [7]. Cowart M.D., Sucholeiki I., Bukownik R.R., Wilcox C.S. J. Am. Chem. Soc., 1988, 110:6204 [8]. Cai K., Lipke M.C., Liu Z., Nelson J., Cheng T., Shi Y., Cheng C., Shen D., Han J.-M., Vemuri S., Feng Y., Stern C.L., Goddard W.A., Wasielewski M.R., Stoddart J.F. Nat. Commun., 2018, 9:5275 [9]. Kiehne U., Weilandt T., Lützen A. Eur. J. Org. Chem., 2008, 2008:2056 [10]. Kiehne U., Weilandt T., Lützen A. Org. Lett., 2007, 9:1283 [11]. Bhaskar Reddy M., Shailaja M., Manjula A., Premkumar J.R., Sastry G.N., Sirisha K., Sarma A.V.S. Org. Biomol. Chem., 2015, 13:1141 [12]. Boyle E.M., Comby S., Molloy J.K., Gunnlaugsson T. J. Org. Chem., 2013, 78:8312 [13]. Kazem-Rostami M. Synlett, 2017, 28:1641 [14]. Kazem-Rostami M., Moghanian A. Org. Chem. Front., 2017, 4:224 [15]. Kazem-Rostami M. New J. Chem., 2019, 43:7751 [16]. Hamada Y., Mukai S. Tetrahedron Asymmetry, 1996, 7:2671 [17]. Michon C., Sharma A., Bernardinelli G., Francotte E. Lacour J. Chem. Commun., 2010, 46:2206 [18]. Kamiyama T., Sigrist L.,Cvengroš J. Synthesis, 2016, 48:3957 [19]. Sharma A., Besnard C., Guenee L. Lacour J. Org. Biomol. Chem., 2012, 10:966 [20]. Sharma A., Guenee L., Naubron J.-V. Lacour J. Angew. Chem., Int. Ed., 2011, 50:3677 [21]. Bosmani A., Guarnieri-Ibáñez A. Lacour J. Helv. Chim. Acta, 2019, 102:1900021 [22]. Alessandro B., Alejandro G.I., Sébastien G., Céline B. Jérôme L. Angew. Chem. Int. Ed., 2018, 57:7151 [23]. Michon C., Gonçalves-Farbos M.-H. Lacour J. Chirality, 2009, 21:809 [24]. Weatherly C.A., Na Y.-C., Nanayakkara Y.S., Woods R.M., Sharma A., Lacour J., Armstrong D.W. J. Chromatogr. B, 2014, 955:72 [25]. Satishkumar S., Periasamy M. Tetrahedron Asymmetry, 2006, 17:1116 [26]. Didier D., Tylleman B., Lambert N., Vande Velde C.M.L., Blockhuys F., Collas A., Sergeyev S. Tetrahedron, 2008, 64:6252 [27]. Jameson D.L., Field T., Schmidt M.R., DeStefano A.K., Stiteler C.J., Venditto V.J., Krovic B., Hoffman C.M., Ondisco M.T., Belowich M.E. J. Org. Chem., 2013, 78:11590 [28]. Didier D., Sergeyev S. Eur. J. Org. Chem., 2007, 2007:3905 [29]. Jensen J., Tejler J., Wärnmark K. J. Org. Chem., 2002, 67:6008 [30]. Jarzebski A., Bannwarth C., Tenten C., Benkhaeuser C., Schnakenburg G., Grimme S. Lützen A. Synthesis, 2015, 47:3118 [31]. Bishop R.R. J. Appl. Chem., 1956, 6:256 [32]. Kiehne U., Lützen A. Synthesis, 2004, 2004:1687 [33]. Tatar A., Valík M., Novotná J., Havlík M., Dolenský B., Král V., Urbanová M. Chirality, 2014, 26:361 [34]. Malik Q.M., Ijaz S., Craig D.C., Try A.C. Tetrahedron, 2011, 67:5798 [35]. Artacho J., Wärnmark K. Synthesis, 2009, 2009:3120 [36]. Dusso D., Ramirez C., Parise A., Lanza P., Vera D.M., Chesta C., Moyano E.L., Akhmedov N.G. Magn. Reson. Chem., 2019, 57:423 [37]. Didier D., Sergeyev S. Tetrahedron, 2007, 63:3864 [38]. Benkhäuser-Schunk C., Wezisla B., Urbahn K., Kiehne U., Daniels J., Schnakenburg G., Neese F., Lützen A. ChemPlusChem, 2012, 77:396 [39]. Weilandt T., Kiehne U., Bunzen J., Schnakenburg G., Lützen A. Chem. Eur. J., 2010, 16:2418 [40]. Kiehne U., Bruhn T., Schnakenburg G., Fröhlich R., Bringmann G., Lützen A. Chem. Eur. J., 2008, 14:4246 [41]. Ishida Y., Ito H., Mori D., Saigo K. Tetrahedron Lett., 2005, 46:109 [42]. Faroughi M., Zhu K.-X., Jensen P., Craig D.C., Try A.C. Eur. J. Org. Chem., 2009, 2009:4266 [43]. Pereira R., Pfeifer L., Fournier J., Gouverneur V., Cvengroš J. Org. Biomol. Chem., 2017, 15:628 [44]. Sergeyev S., Didier D., Boitsov V., Teshome A., Asselberghs I., Clays K., Vande Velde C.M.L., Plaquet A., Champagne B. Chem. Eur. J., 2010, 16:8181 [45]. Kazem-Rostami M. J. Therm. Anal. Calorim., 2019, [46]. Maugeri L., Lébl T., Cordes D.B., Slawin A.M.Z., Philp D. J. Org. Chem., 2017, 82:1986 [47]. Maugeri L., Jamieson E.M.G., Cordes D.B., Slawin A.M.Z., Philp D. Chem. Sci., 2017, 8:938 [48]. Maugeri L., Asencio-Hernández J., Lébl T., Cordes D.B., Slawin A.M.Z., Delsuc M.-A., Philp D. Chem. Sci., 2016, 7:6422 [49]. Banerjee S., Bright S.A., Smith J.A., Burgeat J., Martinez-Calvo M., Williams D.C., Kelly J.M., Gunnlaugsson T. J. Org. Chem., 2014, 79:9272
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2020.2.7 Catalyst Activated carbon sulfonic acid (AC-SO3H) as a green acidic catalyst for solvent-free synthesis of benzimidazole derivatives Activated carbon sulfonic acid (AC-SO3H) as a green acidic catalyst for solvent-free synthesis of benzimidazole derivatives Afsharpour Roya Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran Zanganeh Sahar Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran Kamantorki Sohaila Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran Fakhraei Fatemeh Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran Rostami Esmael Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran 01 04 2020 3 2 148 156 04 11 2019 22 12 2020 Copyright © 2020, Sami Publishing Company (SPC). 2020 https://www.ajnanomat.com/article_103975.html

In this work, activated carbon sulfonic acid was prepared from the reaction of activated carbon and chlorosulfonic acid in chloroform at reflux conditions and characterized using X-ray powder diffraction (XRD) spectrum, infra-red (IR) spectrum, field emission scanning electron microscopy (FE-SEM) images and energy dispersive X-ray spectroscopy (EDS). Benzimidazole was prepared in excellent yields through the multicomponent condensation reaction of 1,2-phenylenediamine with aryl aldehydes in the presence of sulfonic acid-functionalized activated carbon (AC-SO3H), as an active catalyst, under solvent-free conditions. According to the optimized variables, the best reaction conditions for preparing benzimidazole were found to be: 0.02 gram of catalyst in solvent-free condition at 30 Min. and at 75 °C. To demonstrate the stability and durability of the catalyst, the yields of five successive runs with recovered catalyst were reported, showing no significant change in the obtained yields. Ultimately, the synthesis of benzimidazoles was achieved using an efficient, simple, environmentally benign, inexpensive and economic approach in the presence of AC-SO3H catalyst.

Activated carbon sulfonic acid catalyst Benzimidazole Solvent-free Green synthesis
[1]. Debus H. Annal Chem Pharm., 1858, 107:199 [2]. Radziszewski B. Ber Deut Chem Ges., 1882, 15:1493 [3]. Pellei M., Gandin V., Marzano C., Marinelli M., Del Bello F. and Santini C. Appl. Organomet. Chem., 2018, 32:e4185 [4]. Naeimi H., Alishahi N. J Exp Nanosci., 2015, 10:222 [5]. Naeimi H., Alishahi N. J Ind Eng Chem., 2014, 20:2543 [6]. Sharma G.V.M., Jyothi Y. and Lakshmi P.S. Synth Commun., 2006, 36:2991 [7]. Mirjalili B.F., Bamoniri A., Mirhoseini M.A. Sci Iran., 2013, 20:587 [8]. Safari J., Khalili S.D., Banitaba S.H. Synth Commun., 2011, 41:2359 [9]. Sangshetti J.N., Kokare N.D., Kotharkar S.A., Shinde D.B. Chin Chem Lett., 2008, 19:762 [10]. Kanazawa C., Kamijo S., Yamamoto Y. J Am Chem Soc., 2006, 128:10662 [11]. a) Wang L., Sheng J., Tian H., Qian C. Synth Commun., 2004, 34:4265; b) Wang F., Tran-Dubé M., Scales S., Johnson S., McAlpine I., Ninkovic S. Tetrahedron Lett. 2013, 54:4054 [12]. Oda S., Shimizu H., Aoyama Y., Ueki T., Shimizu S., Osato H., Takeuchi Y. Org Process Res Dev., 2011, 16:96 [13]. Rezayati S., Mehmannavaz M., Salehi E., Haghi S., Hajinasiri R., Afshari Sharif Abad S. J Sci I R Iran, 2016, 27:51 [14]. Rezayati S., Abbasi Z., Rezaee Nezhad E., Hajinasiri R., Soleymani Chalanchi S. Org Chem Res., 2016, 2:162 [15]. Duan L.P., Li Q., Wu N.B., Xu D.F., Zhang H.B., Chin Chem Lett., 2014, 25:155 [16]. Shingalapur R.V., Hosamani K.M., Keri R.S. Eur J Med Chem., 2009, 44:4244 [17]. Mukherjee A., Kumar S., Seth M., Bhaduri A. P. Ind J Chem., 1989, 28:391 [18]. Bhandari K., Srinivas N., Marrapu, V.K. Bioorg Med Chem Lett., 2010, 20:291 [19]. Zang H., Su Q., Mo Y., Cheng B. W., Jun S. Ultrason Sonochem., 2010, 17:749 [20]. Tonelli M., Simone M., Tasso B., Novelli F., Biodo V. Bioorg Med Chem., 2010, 18:2937 [21]. Nasr-Esfahani M., Montazerozohori M., Abdizadeh T. Chem Pap., 2015, 69:1491 [22]. Ozkay Y., Iskar I., Incesu Z., Alkalin G. E. Eur J Med Chem., 2010, 45:3320 [23]. Hadizadeh F.H., Hosseinzadeh V., Shariaty M., Kazemi S. J Pharm Res., 2008, 7:29 [24]. Wan Y., Liu G., Zhao L., Wang H., Hung S., Chen L., Wu H. J Heterocycl Chem., 2014, 51:713 [25]. Bhragual D.D., Kumar N., Drabu S., J Chem Pharm Res. 2010, 2:345 [26]. Chawla A., Sharma A., Sharma A. K. Pharma Chem. 2012, 4:116