Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2020.1.1 Original Article Photocatalytic degradation of malachite green dye under UV light irradiation using calcium-doped ceria nanoparticles Photocatalytic degradation of malachite green dye under UV light irradiation using calcium-doped ceria nanoparticles Amar Ibrahim A. Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya |Central Laboratory at Sebha University, Sebha, Libya Harara Hebatallah M. Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Baqul Qamrah A. Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Abdul Qadir Mabroukah A. Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Altohami Fatima A. Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Ahwidi Mohammed M. Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Abdalsamed Ihssin A. Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Saleh Fatema A. Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya 01 01 2020 3 1 1 14 22 06 2019 21 09 2019 Copyright © 2020, Sami Publishing Company (SPC). 2020 https://www.ajnanomat.com/article_92856.html

In this study, photocatalytic activity of Ca-doped ceria (CDC) for malachite green (MG) degradation was investigated. CDC was successfully synthesized via co-precipitation method using ammonium oxalate as a precipitating agent. CDC was characterized using Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), UV-Vis spectroscopy, and scanning electron microscopy (SEM). The band gap energy (Eg) of CDC was found to be 3.96 eV. In addition, the factors affecting the photodegradation of MG including; irradiation time, photocatalyst dosage, initial dye concentration, and solution temperature were studied. The results revealed that CDC could degrade approximately 93% of MG dye at the concentration of 6 mg/L, irradiation time of 90 min, photocatalyst dosage of 0.1 g, and solution temperature of 35 °C. The obtained results indicate that CDC is a promising material for the photocatalytic applications and can be used to eliminate very toxic dyes such as MG.

dye photodegradation Nanostructured materials doped ceria catalyst Semiconductor Optical properties
[1]. Mousavi M., Habibi-Yangjeh A., Pouran S. R. J. Mater. Sci. Mater. Electron.,2018, 29:1719 [2]. Chen Y., Zhang Y., Liu C., Lu A., Zhang W. Int. J. Photoenergy., 2012, 2012:1 [3]. Mohamed A., Ghobara M. M., Abdelmaksoud M. K., Mohamed G.G. Sep. Purif. Technol., 2019, 210:935 [4]. Gallego-Urrea J.A., Hammes J., Cornelis G., Hassellöv M. NanoImpact., 2016, 3-4:67 [5]. Dickhout J.M., Moreno J., Biesheuvel P.M., Boels L., Vos W.M.d., Lammertink R.G.H. J. Colloid Interface Sci., 2017, 487:523 [6]. Gnanam S., Rajendran V. J. Alloys Compd., 2018, 735:1854 [7]. Murugana R., Kashinath L., Subash R., Sakthivel P., Byrappa K., Rajendran S., Ravi G. Mater. Res. Bull., 2018, 97:319 [8]. Al-Anber Z.A., Al-Anber M.A., Matouq M., Al-Ayed O.O., Omari N.M.N.M. Desalination., 2011, 276:169 [9]. Amar I. A., Sharif A., Alkhayali M., Jabji M., Altohami F., AbdulQadir M., Ahwidi M.M. IJEE., 2018, 9:247 [10]. Awin L.A., El-Rais M.A., Etorki A.M., Mohamed N.A., Erhab H.M. Mater. Focus., 2018, 7:1 [11]. Feizpoor S., Habibi-Yangjeh A. , Yubuta K., Vadivelc S. Mater. Chem. Phys., 2019, 224:10 [12]. Markovic D., Milovanovic S., Radoicic M., Radovanovic Z., Zizovic I., Saponjic Z., Radetic M. J. Serb. Chem. Soc., 2018, 83:1379 [13]. Adepu A.k., Katta V., Venkatathri N. New. J. Chem., 2017, 41:2498 [14]. Pirhashemi M., Habibi-Yangjeh A., Pouran S.R. J. Ind. Eng Chem., 2018, 62:1 [15]. Ayodhya D., Veerabhadram G. Mater. Today. Energy., 2018, 9:83 [16]. Van Dao D., Nguyen T.T.D., Majhi S.M., Adilbish G., Lee H.J., Yu Y.T., Lee I.H. Mater. Chem. Phys., 2019, 231:1 [17]. Elahi B., Mirzaee M., Darroudi M., Oskuee R.K., Sadri K., Amiri M.S. Ceram. Int., 2019, 45:4790 [18]. Chandar N.K., Jayavel R. Physica E., 2014, 58:48 [19]. Channei D., Inceesungvorn B., Wetchakun N., Ukritnukun S., Nattestad A., Chen J., Phanichphant S. Sci. Rep., 2014, 4:5757 [20]. Goubin F., Rocquefelte X., Whangbo M.H., Montardi Y., Brec R., Jobic S. Chem. Mater., 2004, 16:662 [21]. Yu J.G., Yang B.C., Shin J.W., Lee S., Oh S., Choi J.H., Jeong J., Noh W., An J. Ceram. Int., 2019, 45:3811 [22]. Amar I.A., Petit C.T. G., Zhang L., Lan R., Skabara P.J., Tao S.W. Solid. State. Ionics., 2011, 201:94 [23]. Amar I.A., Petit C.T.G., Mann G., Lan R., Skabara P.J., Tao S. Int. J. Hydrogen Energy., 2014, 39:4322 [24]. Li H., Wang G., Zhang F., Cai Y., Wang Y., Djerdj I. RSC. Adv., 2012, 2:12413 [25]. Li R., Yabe S., Yamashita M., Momose S., Yoshida S., Yin S., Sato T. Solid. State. Ionics., 2002, 151:235 [26]. Truffault L., Ta M.T., Devers T., Konstantinov K., Harel V., Simmonard C., Andreazza C., Nevirkovets I.P., Pineau A., Veron O., Blondeau J.P. Mater. Res. Bull., 2010, 45:527 [27]. Slostowski C., Marre S., Bassata J.M., Aymonier C. J. Supercrit. Fluids., 2013, 84:89 [28]. Yue L., Zhang X.M. J. Alloys Compd., 2009, 475:702 [29]. Maria Magdalane C., Kaviyarasu K., Judith Vijaya J., Jayakumar C., Maaza M., Jeyaraj B. J. Photochem. Photobiol., B., 2017, 169:110 [30]. Banerjee S., Devi P.S., Topwal D., Mandal S., Menon K. Adv. Funct. Mater., 2007, 17:2847 [31]. Ma Y., Wang X., Khalifa H.A., Zhu B., Muhammed M. Int. J. Hydrogen Energy., 2012, 37:19401 [32]. Soleimani F., Salehi M., Gholizadeh A. Ceram. Int., 2018, 45:9826. [33]. Fu Y.P., Chen S.H., Huang J.J. Int. J. Hydrogen Energy., 2010, 35:745 [34]. Matmin J., Jalani M.A., Osman H., Omar Q., Ab’lah N., Elong K., Kasim M.F. Nanomaterials., 2019, 9:264 [35]. He H.Y., Lu J. Sep. Purif. Technol., 2017, 172:374 [36]. Mandal R.K., Purkayastha M.D., Majumder T.P. Optik. 2019, 180:174 [37]. Athawale A.A., Bapat M.S., Desai P.A. J. Alloys Compd., 2009, 484:211 [38]. Prabaharan D.M.D.M., Sadaiyandi K., Mahendran M., Sagadevan S. Mat. Res., 2016, 19:478 [39]. Nezamzadeh-Ejhieh A., Shams-Ghahfarokhi Z. J. Chem., 2013, 2013:11 [40]. Saleh R., Djaja N.F. Superlattices Microstruct., 2014, 74:217 [41]. Sanna V., Pala N., Alzari V., Nuvoli D., Carcelli M. Mater. Lett.,2016, 162:257 [42]. Raja V.R., Karthika A., Kirubahar S.L., Suganthi A., Rajarajan M. Solid. State. Ionics., 2019, 332:55 [43]. Josephine G.A.S., Ramachandran S., Sivasamy A. J. Saudi Chem Soc., 2015, 19:549 [44]. Zhang C., Hen H., Wang N., Chen H., Kong D. Ceram. Int., 2013, 39:3685-3 [45]. Chen C.C., Lu C.S., Chung Y.C., Jan J.L. J. Hazard. Mater., 2007, 141:520 [46]. Saikia L., Bhuyan D., Saikia M., Malakar B., Dutta D.K., Sengupt P. Appl. Catal. A-Gen., 2015, 490:42
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2020.1.2 Short communication Antifungal activity of biosynthesized CuO nanoparticles using leaves extract of Moringa oleifera and their structural characterizations Antifungal activity of biosynthesized CuO nanoparticles using leaves extract of Moringa oleifera and their structural characterizations Pagar Khanderao Department of Chemistry, KKHA Arts, SMGL Commerce and SPHJ Science College, Chandwad, Savitribai Phule Pune University, Maharashtra 423 101, India Ghotekar Suresh Department of Chemistry, Sanjivani Arts, Commerce and Science College, Kopargaon 423 603, Savitribai Phule Pune University, Maharashtra, India Pagar Trupti Department of Chemistry, G.M.D Arts, B.W Commerce and Science College, Sinnar, 422 103, Savitribai Phule Pune University, Maharashtra, India Nikam Amol Department of Chemistry, GMV Science College, Tala 402 111, University of Mumbai, Maharashtra, India Pansambal Shreyas Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India Oza Rajeshwari Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India Sanap Dnyaneshwar Department of Chemistry, Arts, Commerce and Science College, Dindori 422 202, Savitribai Phule Pune University, Maharashtra, India Dabhane Harshal Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India 01 01 2020 3 1 15 23 14 06 2019 15 07 2019 Copyright © 2020, Sami Publishing Company (SPC). 2020 https://www.ajnanomat.com/article_93007.html

Copper oxide nanoparticles (CuONPs) were synthesized using Moringa oleifera leaf extract via a simple green chemistry approach. The prepared CuONPs were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), UV-visible diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. The CuONPs showed antifungal activity against Candida albicans, Aspergillus niger, Aspergillus clavatus, Trichophyton mentographytes, and Epidermophyton floccosum. The results revealed the successful synthesis of CuONPs by simple green chemistry approach may provide a useful tool in the field of nanotechnology.

Nanotechnology CuO NPs Antifungal activity Moringa oleifera Photoluminescence
[1]. Gawande M.B., Goswami A., Felpin F.X., Asefa T., Huang X., Silva R., Zou X., Zboril R., Varma R.S. Chemical reviews, 2016, 116:3722 [2]. Ghosh Chaudhuri R., Paria S. Chemical reviews, 2011, 112:2373 [3]. Daniel M.C., Astruc D. Chemical reviews, 2004, 104:293 [4]. Ghotekar S. Asian J. Green Chem., 2019, 3:187 [5]. Ahmed S., Ahmad M., Swami B.L., Ikram S. Journal of Advanced Research, 2016, 7:17 [6]. Frewer L.J., Gupta N., George S., Fischer A.R.H., Giles E.L., Coles D. Trends in Food Science & Technology, 2014, 40:211 [7]. Kamble D.R., Bangale S.V., Ghotekar S.K., Bamane S.R. J Nanostruct., 2018, 8:144 [8]. Syedmoradi L., Daneshpour M., Alvandipour M., Gomez F.A., Hajghassem H., Omidfar K. Biosensors and Bioelectronics, 2017, 87:373 [9]. Ghotekar S., Pansambal S., Pagar K., Pardeshi O., Oza R. Nanochem. Res., 2018, 3:189 [10]. Savale A., Ghotekar S., Pansambal S., Pardeshi O. J. Bacteriol. Mycol. Open Access, 2017, 5:00148 [11]. Ghotekar S., Savale A., Pansambal S. J. Water Environ. Nanotechnol., 2018, 3:95 [12]. Ghotekar S.K., Vaidya P.S., Pande S.N., Pawar S.P. Int. J. Multidis. Res and Deve., 2015, 2:419 [13]. Ghotekar S.K., Pande S.N., Pansambal S.S., Sanap D.S., Mahale K.M., Sonawane B. World Journal of Pharmacy and Pharmaceutical Sciences, 2015, 4:1304 [14]. Bangale S., Ghotekar S. Int. J. Nano Dimens., 2019, 10:217 [15]. Soleiman-Beigi M., Arzehgar Z. Synlett, 2018, 29:986 [16]. Sajjadifar S., Arzehgar Z., Khoshpoori S. J. Inorg. Organomet. Polym. Mater., 2018, 28:837 [17]. Arzehgar Z., Sajjadifar S., Arandiyan H. Asian J. Green Chem., 2019, 3:43 [18]. Soleiman-Beigi M., Arzehgar Z. J. Sulfur Chem., 2015, 36:395 [19]. Soleiman-Beigi M., Arzehgar Z. Monatsh Chem., 2016, 147:1759 [20]. Soleiman‑Beigi M., Arzehgar Z. Heteroatom Chem., 2016, 26:355 [21]. Sheikhshoaie I., Davary, S., Ramezanpour S. Chemical Methodologies, 2018, 2:47 [22]. Rahnama A., Gharagozlou M. Optical and Quantum Electronics, 2012, 44:313 [23]. Yu Y., Zhang, J. Materials Letters, 2009, 63:1840 [24]. Safarifard V., Morsali A., Ultrasonics Sonochemistry, 2012, 19:823 [25]. Zhu J., Bi H., Wang Y., Wang X., Yang X., Lu L. 2007. Materials Letters, 2007, 61:5236 [26]. Battez A.H., González R., Viesca J.L., Fernández J.E., Fernández J.D., Machado A., Chou R. and Riba J., Wear, 2008, 265:422 [27]. Nasrollahzadeh M., Sajadi S.M., Maham M. RSC Advances, 2015, 5:40628 [28]. Yu T., Cheong F.C., Sow C.H. Nanotechnology, 2004, 15:1732 [29]. Pansambal S., Deshmukh K., Savale A., Ghotekar S., Pardeshi O., Jain G., Aher Y., Pore D. J Nanostruct., 2017, 7:165 [30]. Borgohain J.B., Singh M.V., Ramarao, T., Shripathi S., Mahamuni. Phys. Rev., 2000, 61:11093 [31]. Cao M., Wang Y., Guo C., Qi Y., Hu C., Wang E. Journal of nanoscience and nanotechnology, 2004, 4:824 [32]. Keßler M.T., Robke S., Sahler S., Prechtl M.H. Catalysis Science & Technology, 2014, 4:102 [33]. Wang H., Xu J.Z., Zhu J.J., Chen H.Y. Journal of crystal growth, 2002, 244:88 [34]. Jayaprakash J., Srinivasan N., Chandrasekaran P., Girija E.K. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 136:1803 [35]. Xu J.F., Ji W., Shen Z.X., Tang S.H., Ye X.R., Jia D.Z., Xin X.Q. Journal of Solid State Chemistry, 1999, 147:516 [36]. Umadevi M., Christy A.J. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 109:133 [37]. Salavati-Niasari M., Davar F. Materials Letters, 2009, 63:441 [38]. Shende R., Subramanian S., Hasan S., Apperson S., Thiruvengadathan R., Gangopadhyay K., Gangopadhyay S., Redner P., Kapoor D., Nicolich S., Balas W. Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials, 2008, 33:122 [39]. Vijaya Kumar R., Elgamiel R., Diamant Y., Gedanken A., Norwig J. Langmuir, 2001, 17:1406 [40]. Varshney R., Bhadauria S., Gaur M.S. Nano Biomedicine & Engineering, 2012, 4 [41]. Lingaraju K., Naika H.R., Manjunath K., Nagaraju G., Suresh D., Nagabhushana H. Acta Metallurgica Sinica (English Letters), 2015, 28:1134 [42]. Aher Y.B., Jain G.H., Patil G.E., Savale A.R., Ghotekar S.K., Pore D.M., Pansambal S.S., Deshmukh K.K. Int. J. Mole. And Clin. Micro., 2017, 7:776 [43]. Sharma J.K., Akhtar M.S., Ameen S., Srivastava P., Singh G. Journal of Alloys and Compounds, 2015, 632:321 [44]. Pansambal S., Gavande S., Ghotekar S., Oza R., Deshmukh K. Int. J. Sci. Rre. Sci. Tech., 2017, 3:1388 [45]. Pansambal S., Ghotekar S., Oza R., Deshmukh K. Int. J. Sci. Rre. Sci. Tech., 2019, 5:122 [46]. Gunalan S., Sivaraj R., Venckatesh R. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 97:1140 [47]. Naika H.R., Lingaraju K., Manjunath K., Kumar D., Nagaraju G., Suresh D., Nagabhushana H. Journal of Taibah University for Science, 2015, 9:7 [48]. Sankar R., Maheswari R., Karthik S., Shivashangari K.S., Ravikumar V. Materials Science and Engineering: C, 2014, 44:234 [49]. Jayakumarai G., Gokulpriya C., Sudhapriya R., Sharmila G., Muthukumaran C. Applied Nanoscience, 2015, 5:1017 [50]. Brilhante R.S.N., Sales J.A., Pereira V.S., Castelo D.D.S.C.M., de Aguiar Cordeiro R., de Souza Sampaio C.M., Paiva M.D.A.N., dos Santos J.B.F., Sidrim J.J.C., Rocha M.F.G. Asian Pacific journal of tropical medicine, 2017, 10:621 [51]. Wiegand I, Hilpert K, Hancock REW. Nature Protocols, 2008, 3:163 [52]. Ijaz F., Shahid S., Khan S.A., Ahmad W., Zaman S. Tropical Journal of Pharmaceutical Research, 2017, 16:743
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2020.1.3 Review Article Magnetic nanoparticles - a promising tool for targeted drug delivery system Magnetic nanoparticles - A promising tool for targeted drug delivery system Amin Prakruti Prakruti Amin, Sal Institute of Pharmacy, Pharmaceutics Dept. Nr. Science City, Ahmedabad, Gujarat-India Patel Manish Manish Patel L.M.College of Pharmacy, Pharmaceutics Dept. Navrangpura, Ahmedabad-Gujarat-India 01 01 2020 3 1 24 37 30 11 2018 19 05 2019 Copyright © 2020, Sami Publishing Company (SPC). 2020 https://www.ajnanomat.com/article_93067.html

Over the last decade, nanotechnology has brought great development in the biomedical field. This study reviewed some physical and chemical characteristic of magnetic nanoparticles that are crucial for medical applications. Advances in preparation of magnetic nanoparticles have some superior applications in hyperthermia, magnetic drug delivery, gene delivery, and magnetic resonance imaging. It was found that, the bio-distribution, pharmacokinetic, and biocompatibility magnetic nanoparticles can be affected by their physicochemical properties, size, shape, and surface chemistry.

Magnetic nanoparticles Biomedical Hyperthermia Gene delivery
[1]. Goesmann H., Feldmann C. Chem. Int. Ed., 2010, 49:1362 [2]. Abolfazl A., Mohamad S., Soodabeh D. Nanoscale Research Letters, 2012, 7:144 [3]. Vashist S.K. J. Nanomed Nanotechol, 2013, 4:1000e130 [4]. Yadollahpour A. Orient. J. Chem., 2015, 31: 25 [5]. Jordan A., Scholz R., Wust P., Fähling H., Felix R. Journal of Magnetism and Magnetic Materials, 1999, 201:413 [6]. Kolhatkar A.G., Jamison A.C., Litvinov D., Willson R.C., Lee. T.R. International Journal of Molecular Sciences, 2013, 14:15977 [7]. Sun C., Lee J.S., Zhang M. Adv Drug Deliv Rev, 2008, 60:1252 [8]. Veiseh O., Gunn J.W., Zhang M. Adv Drug Deliv Rev., 2010, 62:284 [9]. Chomoucka J., Drbohlavova J., Huska D., Adam V., Kizek R., et al. Pharmacol Res, 2010, 62:144 [10]. Ali Y., Morcos S.K., Anderson P.B. Material Science ResearchIndia, 2014, 11:102 [11]. Morcos S.K. Br J Radiol, 2007, 80:73 [12]. Ersoy H., Rybicki F.J. J Magn Reson Imaging, 2007, 26:1190 [13]. Muldoon L.L., Sandor M., Pinkston K.E., Neuwelt E.A. Neurosurgery, 2005, 57:785 [14]. Stuart C.M., Yiu H., Dobson J. International journal of Nanomedicine, 2008, 3:169 [15]. Mody V., Cox A., Shah S., et al. Appl Nanosci, 2014, 4:385 [16]. Murray C.B., Norris D.J., Bawendi M.G. J. Am. Chem. Soc., 1993, 115:8706 [17]. Peng X.G., Manna L., Yang W.D., Wickham J., Scher E., et al. Nature, 2000, 404: 59 [18]. Cui R., Han Z., and Zhu J.J. A European Journal. 2011, 17:9377 [19]. Wang, X., Wang Z., Guo W., Kuang X., Hou, Hong zhuo Liu Sh. Chem. Commun., 2012, 48: 4812 [20]. Khan K., Rehman S., Rahman H.U., Khan Q. Nanomagnetism, 2015, 136 [21]. Thorek D.L., Chen A.K., Czupryna J., Tsourkas A. Annals of biomedical engineering, 2006, 34:23 [22]. Gupta A.K., M. Gupta, Biomaterials, 2005, 26:3995 [23]. Shaw S.Y., Chen Y.J., Ou J.J., Ho L. Enzyme Microb. Technol., 2006, 39:1089 [24]. Indira T.K., Lakshmi P.K. International Journal of Pharmaceutical Sciences and Nanotechnology, 2010, 3:1035 [25]. Rudin M., Weissleder, Nat Rev Drug Discov, 2003, 2:123 [26]. Gu H.W., Zheng R.K., Zhang X.X., Xu B. J. Am Chem Soc., 2004, 126:5664 [27]. Sun S.H., Zeng H., Robinson D.B., Raoux S., Rice P.M., Sun S., Zeng H., Robinson D.B., Raoux S., Rice P.M., Wang S.X., Li G. J. Am. Chem. Soc., 2004, 126:273 [28]. Akbarzadeh A., Samiei M., Davaran S. Nanoscale Research Letters, 2012, 7:144 [29]. Biehl P., Lühe M. , Dutz S., Felix H. Polymers, 2018, 10:91 [30]. Zeng Q., Baker I., Loudis, J.A., Liao Y., Hoopes P.J., Weaver J.B. Appl. Phys. Lett., 2007, 90:233112 [31]. Kayal S., Ramanujan R.V. Sci. Eng., 2010, 30:484 [32]. Hu F.X., Neoh K.G., Kang E.T. Biomaterials, 2006, 27:5725 [33]. Parvin S., Matsui J., Sato E., Miyashita T. J. Sci., 2009, 313:128 [34]. Shubayev V.I., Pisanic T.R., Jin S.H. Adv Drug Deliv Rev., 2009, 61:467 [35]. Gruttner C., Rudershausen S., Teller .J Magn Mater, 2001, 225:1 [36]. Nitin N., LaConte L.E.W., Zurkiya O. J Biol Inorg Chem., 2004 9:706 [37]. Chen YH, Liu YY, Lin RH, Yen FS. J Appl Polym Sci., 2008,108:583 [38]. Jiri K., Yazan H., Lukas R. et al., Nanomaterials, 2017, 7:243. [39]. Bhatia S. Natural Polymer Drug Delivery Systems, 2016, 33:93 [40]. Sun C., Lee J.S., Zhang M. Advanced drug delivery reviews, 2008, 60: 1252 [41]. Devitt M.R., Chattopadhyay D., Kappel B.J., Jaggi J.S., Schiffman S.R., Antczak C. J. Nucl. Med., 2007, 48:1180 [42]. Jun L., Chunyan H., Quanguo H. (2015) Science of Advanced Materials, 2015, 7:672 [43]. Singh N., Jenkins G. J. S., Asadi R., Doak S. H. NanoReviews, 2010, 1:53
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2020.1.4 Short communication Bio-synthesis of iron oxide nanoparticles using neem leaf cake extract and its influence in the agronomical traits of vigna mungo plant Bio-synthesis of iron oxide nanoparticles using neem leaf cake extract and its influence in the agronomical traits of vigna mungo plant Radhakrishnan Ramesh Department of Physics, Sacred Heart College (Autonomous), Tirupattur, Tamil Nadu, India Lakshmi Dhanaraj Department of Physics, Sacred Heart College (Autonomous), Tirupattur, Tamil Nadu, India Ali Khan Faize Liakath Department of Physics, Islamiah College (Autonomous), Vaniyambadi, Vellore Ramalingam Gopal Quantum Materials Research Lab (QMRL), Department of Nanoscience and Technology, Alagappa University, Karaikudi - 630003, Tamil Nadu, India Kaviyarasu Kasinathan Nanoscience’s/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria, South Africa|Nanoscience ’s African Network (NANOAFNET), Materials Research Group (MRG), iThemba LABS - National Research Foundation (NRF), Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province, Cape Town, South Africa 01 01 2020 3 1 38 46 05 06 2019 08 10 2019 Copyright © 2020, Sami Publishing Company (SPC). 2020 https://www.ajnanomat.com/article_95586.html

In this work reports the synthesis of iron oxide along with the complex formation from the neem cake using the biosynthesis and precipitation method. Ferrous sulphate (FeSO4) and sodium hydroxide were used as the precursor precipitating agent, respectively. The resultant specimens were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), ultra-violet visible spectroscopy (UV-Vis), fourier-transform infrared spectroscopy (FT-IR), soil test, biochemical, and phytochemical analysis. To test the effect of the synthesized specimen as the nanofertilizer in the seed germination and the growth, the sample was incorporated in to the red soil and the agronomical traits including plant height. Number of leaves were studied over a survival period of 75 days of the selected plant species vigna mungo using POT analysis. The plant samples were harvested, and then the biochemical and phytochemical studies were carried out for alkaloids, glycosides, flavonoids, phenols, steroids, protein and total chlorophyll content. The results showed that the nanoparticles incorporation enhanced the plant growth and increased the concentration of the bioactive compounds in an appreciable level.

Biosynthesis Neem cake Biochemical Phytochemical Morphological studies
[1]. Ritchie J.T., Johnson A., Stewart B.A., Nielsen D.R. American Society of Agronomy, 1990, 53:369 [2]. Sharifi R.S., Khavazi K. Journal of Food, Agriculture and Environment, 2011, 9:496 [3]. Finch Savage W.E., Dent K.C., Clark L.J. Field Crops Research, 2004, 90:361 [4]. Zhou Y., Lin W., Huang J. Nanoscale Research Letters, 2010, 5:1351 [5]. Shanmugam S., Radhika T., Jothiramalingam R., Mutharasu D. International Journal of Nanoparticles, 2013, 6:350 [6]. Corradini E., Moura M.R., Mattoso L.H.C. EXPRESS Polymer Letters, 2010, 4:509 [7]. Nosheen Elahi N., Saima Mustafa P., Javed Mirza I. Journal of Research (Science), 2010,15:139 [8]. Atiyeh R.M., Edwards C.A., Metzger J.D., Lee S., Arancon N.Q. Biores. Technol., 2002, 84:7 [9]. Ting W., Xiaoying J., Zuliang C., Mallavarapu M., Ravendra N. Science of the Total Environment, 2014, 466:210 [10]. Kuhn L.T., Bojesen A., Timmermann L., Nielsen M.M., Morup S. Journal of Condensed matter Physics, 2002, 14:13551 [11]. Machado S., Pinto S.L, Grosso J.P., Nouws H.P.A., Albergaria J.T., Delerue Matos C. Science of Total Environment, 2013, 8:445 [12]. Pratyoosh S., Jaya B., Smriti S. International Journal of Microbiology Research, 2011, 3:71 [13]. Nakashima T., Fukuda H., Kyotani S., Morikawa H., Journal of Fermentation Technology., 1988, 66:441 [14]. Ramachandran S., Singh S.K., Larroche C., Soccol C.R., Pandey A., Bioresource Technology., 2007, 98:214 [15]. Pandey A., Soccol C.R., Mitchell D. Bioprocesses and products: Process Biochem., 200, 35:153 [16]. Ozçimen D., Karaosmanoglu F. Renewable Energy, 2004, 29:779 [17]. Di L., Capra M., Ribeiro F., Vargas N.P., Freire G.L., De Oliveira D.M. Appl. Biochem. Biotechnol-Part A Enzyme Eng. Biotechnology, 2004, 113:173 [18]. Ma X.M., Geiser Lee J., Deng Y., Kolmakov A. Science of Total Environment, 2010, 408: 3053 [19]. Vanathi P., Rajiv N., Rajeshwari S., Pattanathu K.S., Venckatesh R. Mater. Letter., 2014, 134:13 [20]. Manivasagaperumal R., Vijayarengan P., Balamurugan S., Thiyagarajan G. International Journal of Recent Scientific Research, 2012, 3:687 [21]. Liu X.M., Zhang F.D., Zhang S.Q., He X.S., Fang R., Feng Z. Plant Nutrition and Fertilizer Science, 2005, 11:14 [22]. Shenu H.E., Kwari J.D., Sandbe M.K. International Journal of Agriculture & Biology, 2015, 25:125 [23]. Nasrollahzadeh A., Open Journal of Ecology, 2017, 7:101 [24]. Subba Reddy Y., Maria Magdalane C., Kaviyarasu K., Genene Tessema M., Kennedy J., Maaza M. Journal of Physics and Chemistry of Solids, 2018, 123:43 [25]. Kaviyarasu K., Devarajan P.A., Xavier S.J., Thomas S.A., Selvakumar S. Journal of Materials Science & Technology, 2012, 28:15 [26]. Judith Vijaya J., Jayaprakash N., Kombaiah K., Kaviyarasu K., John Kennedy L., Jothi Ramalingam R., Hamad A., Mansoor-Ali V.M., Maaza M. Journal of Photochemistry and Photobiology B: Biology. 2017, 177:62 [27]. Angel Ezhilarasi A., Judith Vijaya J., Kaviyarasu K., John Kennedy L., Jothi Ramalingam R., Hamad A. Journal of Photochemistry and Photobiology B: Biology, 2018, 180:39 [28]. Iyyappa Rajan P., Judith Vijaya J., Jesudoss S.K., Kaviyarasu K., John Kennedy L., Jothiramalingam R., Hamad A., Mansoor A. Materials Research Express, 2017, 4:085030 [29]. Jesudoss S.K., Judith Vijaya J., Iyyappa Rajan P., Kaviyarasu K., Sivachidambaram M., John Kennedy L., Hamad A., Jothiramalingam R., Murugan A. Photochemical & Photobiological Sciences, 2017, 16:766 [30]. Saritha V., Paul A., Mariadhas V., Naif Abdullah A., Abdul K., Ghilan M., Kaviyarasu K., Balasubramani R., Soon W., Arokiyaraj S. Journal of Photochemistry and Photobiology B: Biology, 2019, 191:65 [31]. Kanimozhi K., KhaleelBasha S., SuganthaKumari V., Kaviyarasu K. Journal of nanoscience and Nanotechnology, 2019, 19:2493 [32]. Raja A., Selvakumar K., Rajasekaran P., Arunpandian M., Ashokkumar S., Kaviyarasu K., Asath Bahadur S., Swaminathan M. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 564:23
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2020.1.5 Short communication Influence of atomizing voltage on fluorine doped tin oxide via spray pyrolysis technique Influence of atomizing voltage on fluorine doped tin oxide via spray pyrolysis technique Agbim Ebube G. Department of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, Awka Ikhioya Imosobomeh L. Department of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, Awka|Crystal Growth and Material Science Laboratory/Department of Physics and Astronomy, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria Ekpunobi Azibuike J. Department of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, Awka 01 01 2020 3 1 47 57 20 05 2019 27 10 2019 Copyright © 2020, Sami Publishing Company (SPC). 2020 https://www.ajnanomat.com/article_95889.html

Synthesis and characterization fluorine-doped tin oxide thin film using spray pyrolysis were coated on a glass substrate by varying the atomizing voltage. The XRD analysis was carried out and the results showed that the deposited films are polycrystalline in nature having the characteristic peaks of tetragonal structure of SnO2. The observed peaks are (110), (101), (200), (211) and the preferential growth was found to be (110) direction. The I/V plots of the material deposited with 3.8 kV, 4.0 kV and 4.2 kV, which represent sample FT1-FT3 showed a non-linear plot and observed to be a non Ohmic semiconducting material. It was also noticed that as the atomizing voltage of the depositing material increases the thickness of the films increases. The resistivity of the material deposited increases and decreases at 4.0 kV as the atomizing voltage and thickness of the films increases. The electrical conductivity of the material deposited increases with respect to the atomizing voltage and thickness, respectively. It was observed that as the optical absorbance and reflectance decreased the wavelength of the incident radiation and transmittance enhanced as the wavelength of the incident radiation increased and the band gap energy of the films were observed to be at the range of 2.70-3.10 eV.

spray pyrolysis Fluorine Tin Oxide XRD Optical properties
[1]. Shanthi S., Subramanian C., Ramasamy P. Journal of Crystal Growth, 1999, 197:858 [2]. Abdullahi S., Moreh A.U., Hamza B., Wara M.A., Kamaluddeen H., Kebbe M.A., Monsuorat U.F. International Journal of Recent Research in Physics and Chemical Sciences, 2015, 1:1 [3]. Chamberlin R.R., Skarman J.S. Journal of the Electrochemical Society, 1966, 113:86 [4]. Filipovic L., Siegfried S., Giorgio C.M., Elise B., Stephan S., Anton K., Jordi T., Jochen K., Jorg S., Franz S. Microelectronics Engineering, 2013, 117:57 [5]. Hongli Z. International Journal of Applied Glass Science, 2013, 4:242 [6]. Jariwala C., Dhivya M., Rane1 R., Chauhan N., Rayjada P.A., Raole P.M., John P.I. Journal of Nano and Electronics Physics,2013, 5:1 [7]. Jaworek A., Sobczyk A.T., Krupa A., Lackowski M., Czech T. Journal of Technical Sciences, 2009, 57:63 [8]. Babar A.R., Shinde S., Moholkar A.V., Bhosale C.H., Kim J.H., Rajpure K.Y. Journal of Semiconductors, 2011, 32:1 [9]. Patrick M.M., Musembi R., Munji M., Odari B., Munguti L., Ntilakigwa A.A., Nguu J., Aduda B., Muthoka B. Advances in materials, 2015, 4:51 [10]. Mwathe P.M., Musembi R., Munji M., Odari B., Munguti L., Ntilakigwa A.A., Nguu J., Aduda B., Muthoka B. Advances In Materials, 2014a, 3:38 [11]. Odari B.M., Musembi R.J., Mageto M.J., Othieno H., Gaitho F., Mghendi M., Muramba V. American Journal of Materials Science., 2013, 3:91 [12]. Subramanian N.S., Santhi B., Sundareswaran S., Venkatakrishnan K.S. Metal-Organic and Nano-Metal Chemistry., 2006, 36:131 [13]. Ravichandran k., Muruganantham G., Sakthivel B., Philominathan P. Journal of Ovonic Research, 2009, 5:63 [14]. Dainius P., Ludwig J.G. Journal of Electroceramics, 2005, 14:103 [15]. Balkenende A.R., Bogaerts A., Scholtz J.J., Tijburg R.M., Willems H. Philips Journal of Research, 1996, 50:365 [16]. Jaworek A., Sobczyk A.T., Krupa A., Lackowski M., Czech T. Journal of Technical Sciences, 2009, 57:63 [17]. Kandasamy P., Lourdasamy A. International Journal of Physics, 2014, 9:261 [18]. Yadav A.A., Masumdar E.U., Moholkar A.V., Neumann-Spallart M., Rajpure K.Y., Bhosale C.H. J. Alloys Compd., 2009, 488:350 [19]. Noh S.I., Ahn H.J., Riu D.H. Ceramics Int., 2012, 38:3735 [20]. Chantarat N., Yu-Wei C., Shu-Han H., Chin-Ching L., Mei-Ching C., San-Yuan C. ECS Journal of Solid State Science and Technology, 2013, 2:131 [21]. Arle R.N., Khatik B.L. International Journal of Chemical and Physical Sciences, 2014, 3:83 [22]. Agbim E.G., Ikhioya I.L., Agbakwuru C.B., Oparaku O., Ugbaja C.M. International Journal of Scientific & Engineering Research, 2019, 10:707 [23]. Sharma A., Prakah D., Verma K.D. Optoelectronics and Advanced Materials-Rapid Communications, 2007, 1:683 [24]. Jeyasubramanian K.T., Gokul S.R. Achievers of Material Science and Engineering, 2016, 78:66 [25]. Kar S., Kundoo S. International Journal of Science and Research, 2015, 4:530 [26]. Karthick P., Divya V., Suja S., Sridharan M., Jeyadheepan K., Asian Journal of Applied Sciences, 2015, 8:259 [27]. Kandasamy P., Lourdasamy A. International Journal of Physics, 2014, 9:261 [28]. Napi M.L., Maarof M.F., SoonC.F., Nayan N., Fazli I.M., Hamed K.A, Mokhtar S.M., Seng N.K., Ahmad M.K., Suriani A.B., Mohamed A. Journal of Engineering and Applied Science, 2016, 11:8800 [29]. Saipriya M., Sultan R., Singh I. Physica B: 2011, 406:812 [30]. Yadav A.A., MasumdarE.U., Moholkar A.V., Neumann-Spallart M., Rajpure K.Y., Bhosale C.H. J. Alloys Compd, 2009, 488:350 [31]. Ziad Y. B, Kelly P. J., Glen W., Boardman J. Coatings, 2014, 4:732 [32]. Agbim E. G., Ikhioya I.L., Ekpunobi A.J. IOSR Journal of Applied Physics, 2019, 11:70 [33]. Kim K.S., Yoon S.Y., Lee W.J., Kim K.H. Surface and Coatings Technology, 2001, 138:229
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2020.1.6 Original Article Biosynthesis of silver nanoparticles using leaf and bark extract of indian plant carissa carandas, characterization and antimicrobial activity Biosynthesis of silver nanoparticles using leaf and bark extract of indian plant carissa carandas, characterization and antimicrobial activity Manjare Satish B. Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India Sharma Sandip G. Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India Gurav Vijay L. Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India Kunde Mamata R. Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India Patil Sneha S. Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India Thopate Shankar R. Department of Chemistry, Shree Sadguru Gangageer Maharaj Science Gautam Arts & Sanjivani Commerce College, Kopargaon, Dist-Ahmednagar 423601, M.S. India 01 01 2020 3 1 58 66 27 07 2019 30 10 2019 Copyright © 2020, Sami Publishing Company (SPC). 2020 https://www.ajnanomat.com/article_96487.html

Biosynthesized silver nanoparticle is a very expanding and useful area. The reductant material in the plant extracts (leaves and bark) of Carissa carandas can produce silver nanoparticles. The plant leaves and bark extract of Carissa caranadas act as reducing and capping agent. Conventionally, chemical reduction is the most frequently applied approach for preparation of metallic nanoparticles; however, it might be hazardous to environment. In the present work we report eco-friendly, cost effective, and green approach for the synthesis of AgNPs by using 0.02 M AgNO3 solution and plant extracts (leaves and bark) of Carissa caranadas as reducing and capping agent. The synthesized nanoparticles were characterized using UV-VIS spectrophotomer, XRD, FT-IR, FE-SEM, and ICP-AES analysis. The biosynthesized silver nanoparticles showed a comparable antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Aspergillus niger. Antimicrobial activity of the biosynthesized silver nanoparticles suggests their possible application in medical and pharmaceuticals industry.

Green synthesis Silver nanoparticles UV-Visible Spectrophotometer FT-IR ICP-AES Antimicrobial activity
[1]. Li X., Zhu T., Shao Z., Li Y., Chang H., Gao W., et al. Tetrahedron. 2016, 72:69 [2]. Gurunathan S. Arab J Chem., 2019, 12:168 [3]. Banerjee P., Satapathy M., Mukhopahayay A., Das P. Bioresour Bioprocess. 2014, 1:1 [4]. Nemamcha A., Moumeni H., Rehspringer J.L. Phys. Procedia., 2009, 2:713 [5]. Sharma M., Sarma P.J., Goswami M.J., Bania K.K. J Colloid Interface Sci., 2017, 490:529 [6]. De Castro K.A., Rhee H. J Incl Phenom Macrocycl Chem. 2015, 82:13 [7]. Kora A.J., Rastogi L. Arab J Chem. 2018, 11:1097 [8]. Santoshi kumari A., Venkatesham M., Ayodhya D., Veerabhadram G. Appl Nanosci. 2015, 5:315 [9]. Singhal G., Bhavesh R., Kasariya K., Sharma A.R., Singh R.P. J Nanoparticle Res., 2011, 13:2981 [10]. Gavhane A., Padmanabhan P., Kamble S., Jangle S. Int J Pharma Bio Sci., 2012, 3:88 [11]. Kalpana D., Han J.H., Park W.S., Lee S.M., Wahab R., Lee Y.S. Arab J Chem . 2014, 12:1722 [12]. Krishnaraj C., Muthukumaran P., Ramachandran R., Balakumaran M.D., Kalaichelvan P.T. Biotechnol Reports., 2014, 4:42 [13]. Deshmukh S.R., Ashrit D.S., Patil B.A. Int J Pharm Pharm Sci., 2012, 4:329 [14]. Siddiqi K.S., Husen A. Nanoscale Res. Lett., 2016, 11:482 [15]. Gurunathan S., Kim E.S., Han J.W., Park J.H., Kim J.H., Grumezescu A.M. Molecules. 2015, 20:22476 [16]. Mallikarjuna K., John Sushma N., Narasimha G., Manoj L., Deva Prasad Raju B. Arab J Chem., 2014, 7:1099 [17]. Satapathy M.K., Banerjee P., Das P. Appl Nanosci., 2015, 5:1 [18]. Padalia H., Moteriya P., Chanda S. Arab J Chem., 2015, 8:732
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2020.1.7 Original Article Computational approach of palladium (II) complex ions with binuclear diamine ligands thermo-physical, chemical, and biological properties: a dft study Computational approach of palladium (II) complex ions with binuclear diamine ligands thermo-physical, chemical, and biological properties: a dft study Islam Mohammad Jahidul Department of Physics, European University of Bangladesh, Dhaka-1216, Bangladesh Paul Sunanda Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong,Hathazari-4334, Bangladesh Kumer Ajoy Department of Chemistry, European University of Bangladesh, Dhaka-1216, Bangladesh Sarker Md Nuruzzaman Department of Physics, European University of Bangladesh, Dhaka-1216, Bangladesh 01 01 2020 3 1 67 81 30 08 2019 16 11 2019 Copyright © 2020, Sami Publishing Company (SPC). 2020 https://www.ajnanomat.com/article_96587.html

Incomputational chemistry through various basis sets, it is possible to design new molecules and discuss their use through their physical, chemical, biochemical studies. Chemical activity, biological activity, physical chemical activities can be diagnosed using density functional theory (DFT) for some palladium (II) complex ions. In this research study, the optimized dihydrazine palladium (II) complex ion (L01), di(1, 2- diaminemethane) palladium (II) complex ion (L02), di(1, 2- diamineethane) palladium (II) complex ion (L03), and di (1, 2- diamine propane) palladium (II) complex ion (L04) were simulated. Finally a comparative study of the palladium (II) complex ions were designed to show what ions are biologically more active using their QSAR data and orbital diagrams for HOMO and LUMO of the study of electronic properties. The HOMO-LUMO gap was also evaluated for chemical reactivity. The PIC50 value was calculated using the QSAR data where the value ​​of L01, L02, and L03 L04 where -15.757, 13.128, -6.111 and -5.955, respectively. If PIC50 is below -6, then the compound is said to be biologically active. It was found that, the L04 is highly biological active and L03 is almost similar to L04. Also, by enhancing the methyl group in palladium chain, the biological activity increased.

Palladium (II) DFT QSAR HOMO LUMO Vibrational spectroscopy Electronic spectroscopy
[1]. Chen X., Engle K.M., Wang D.H., Yu J.Q. Angewandte Chemie International Edition, 2009, 48:5094 [2]. Lazarević T.R., Bugarčić A., Živadin D. European journal of medicinal chemistry, 2017, 142:8 [3]. Ray S.M., Singh R., Jay K., Samantaray Manoja K., Shaikh Mobin M., Panda D., Ghosh P. Journal of the American Chemical Society, 2007, 129:15042 [4]. Ajoy Kumer M.N.S., Sunanda PAUL, International Journal of Chemistry and Technology, 2019, 3:26 [5]. Ajoy Kumer M.N.S., Paul S., Zannat A. Advanced Journal of Chemistry-Section A, 2019, 2:190 [6]. Islam M.J., Sarker Md.N., Kumer A., Paul S. International journal of Advanced Biological and Biomedical Research, 2019, 7:318 [7]. Islam M.J., Kumer A., Sarker Md. N., Paul S., Zannat A. Advanced Journal of Chemistry-Section A, 2019, 2:316 [8]. Ajoy K., Paul S., Sarker Md.N., Islam M.J. International Journal of New Chemistry, 2019, 6:236 [9]. Ajoy K., Sarker Md.N., Pual S. Eurasian Journal of Environmental Research, 2019, 3:1 [10]. Islam M.J., Sarker Md.N., Kumer A., Paul S., International journal of Advanced Biological and Biomedical Research, 2019, 7:306 [11]. Kumer A., Ahmed B., Sharif Md.A., Al-Mamun A. Asian Journal of Physical and Chemical Science, 2017, 4:1 [12]. Sarker Md.N., Ajoy K., Islam M.J., Sunanda P. Asian Journal of Nanoscience and Materials, 2019, 2:439 [13]. Miyaura N., Suzuki A. Chemical eviews, 1995, 95:2457 [14]. Miyaura N., Yanagi T., Suzuki A. Synthetic Communications, 1981, 11:513 [15]. Hossain M.I., Ajoy K. Asian Journal of Chemical Science, 2018, 3:1 [16]. Kumer A., Ahmed B., Sharif M.A., Al-Mamun A. Asian Journal of Physical and Chemical Science, 2017, 4:1 [17]. Garrett C.E., Prasad K. Advanced Synthesis & Catalysis, 2004, 346:889 [18]. Doucet H., Hierso J.C. Currentopinion in drug discovery & development, 2007, 10:672 [19]. Ajoy K., Sunanda P., Sarker N.Md., Islam J.M. International Journal of New Chemistry, 2019, 6:236 [20]. Howard A., McIver J., Collins J. Hyperchem computational chemistry. Hypercube Inc., Waterloo 1994 [21]. Koopmans Y.T. Physica, 1934, 1:104 [22]. Parr R.G., Szentpály L.V., Liu S. Journal of the American Chemical Society, 1999, 121:1922 [23]. Canadell S., Pouget J.P., Brossard L. Solid State Communications, 1990, 75:633 [24]. Zineb Almi S.B., Lanez T., Tchouar N. International Letters of Chemistry, Physics and Astronomy, 2014, 37:113
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2020.1.8 Original Article An innovative approach delivery of anticonvulsant via transcranial route using a smart bio-functional agent cum musa acuminata An innovative approach delivery of anticonvulsant via transcranial route using a smart bio-functional agent cum musa acuminata Madhav Satheesh Faculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, India Dewari Abhinav Faculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, India Tyagi Yogita Faculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, India 01 01 2020 3 1 82 92 25 05 2019 26 11 2019 Copyright © 2020, Sami Publishing Company (SPC). 2020 https://www.ajnanomat.com/article_96791.html

Epilepsy is a central nervous system disorder (neurological disorder) in which the nerve cell activity in the brain becomes disrupted, causing unprovoked, recurrent seizures or unusual behavior, sensations or even unconsciousness. In this research work, Pregablin selected as a molecule for designing a emulgel using novel bio-functional agent and compared with standard polymer. This can be overcome by minimizing the dose and side-effects of API molecule used for various routes. The Pregablin loaded emulgel was prepared using novel bio-functional agent isolated from fruit pulp of Musa acuminata and with standard polymer (sodium alginate) with different ratios. The prepared formulations were evaluated for pH stability studies, % entrapment efficacy, in-vitro drug release and stability studies. The prepared emulgel was subjected to the best formulation based on comparison of above mentioned evaluation parameters, FM2 formulation was found to be the best formulation showing an R2 value of 0.9487, T50% of 23.52 h and T80% of 60.22 h respectively. According to the release kinetics, the best fit model was Peppas Korsmeyer with Fickian Diffusion (Higuchi Matrix) as the mechanism of drug release. Musa acuminata provided the excellent stability for the formulation. The results revealed that, uaing Musa acuminata as bio-functional agent was safe and compatible with drug, so Pregablin loaded emulgel can be more affective for brain targeting upon trans-cranial administration.

Bio-functional agent Emulgel Epilepsy Musa acuminata Pregablin
[1]. Guzel O. J of Bio Trace Ele Res., 2016, 178:1 [2]. Marra V. Epilepsy Research, 2015, 10:6 [3]. Khambhati A.N., Davis K.A, Oommen B.S, Chen S.H, Lucas T.H, Litt B. PLOS Computational Biology, 2015, 11:1 [4]. Danzer S. Neuron Journal, 2012, 75:739 [5]. Pathirana W., Kariyawasam S.H., Tibbotumunwa H., Perera K. Indian J Pharm Sci., 2006, 68:493 [6]. Pathirana W., Abhayawadhana P., Kariyawasam S.H., Ratnasooriya W.D. Indian J. Pharm Sci., 2009, 71:264 [7]. Kamila S., Madhav N.V.S., Sarkar C.N. IJPSR., 2015, 6:1000 [8]. Varshney S., Madhav N.V.S. J. Mol. Medi. and Clin App., 2017, 2:1 [9]. Kotecha R.K., Bhadra S., Rajesh K.S. Int J of Phar and Pharmaceut Sci., 2013, 4:490 [10]. Francis D., Mouftah S., Steffen R., Beduneau A., Pellequer Y., Lamprech A. Eur J Pharm Biopharm., 2015, 89:56 [11]. Madhav N.V.S., Yadav A.P. Acta Pharmaceutica Sinica B., 2013, 6:408 [12]. Dattatraya S.M., Loknete J.D. Int. J. Phar. and Pharmaceut Sci., 2018, 10:93