Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2019.4.1 Organic Chemistry Highly effective synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones using pyridinium-N-sulfonic acid bisulfate as a dual-functional catalyst Highly effective synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones using pyridinium-N-sulfonic acid bisulfate as a dual-functional catalyst Dehghani Sima Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran Merajoddin Maria Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran Zare Abdolkarim Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran 01 10 2019 2 4 367 375 25 01 2019 18 02 2019 Copyright © 2019, Sami Publishing Company (SPC). 2019 https://www.ajnanomat.com/article_85817.html

Acidic ionic liquid pyridinium-N-sulfonic acid bisulfate ([Py-SO3H][HSO4]) has effectively catalyzed the production of 3, 4-dihydropyrimidin-2 (1H)-ones via the condensation reaction of the arylaldehydes with β-ketoesters and urea under solvent-free conditions. Due to the dual-functionality of [Py-SO3H][HSO4] (bearing acidic and basic sites), it was highly effective and general catalyst for the reaction. Additionally, an attractive mechanism for the dual-functionality of the catalyst was proposed.

3 4-Dihydropyrimidin-2 (1H)-one Acidic ionic liquid Dual-functional catalyst Pyridinium-N-sulfonic acid bisulfate (Py-SO3H][HSO4]) Solvent-free
[1]. Wua T.Y., Su S.G., Gung S.T., Lin M.W., Lin Y.C, Ou-Yang W.C., Sun I.W., Lai C.A. J. Iran Chem. Soc., 2011, 8:149 [2]. Sakaebe H., Matsumoto H. Electrochem Commun, 2003, 5: 594 [3]. Gou S.P., Sun I.W. Electrochim Acta, 2008, 53:2538 [4]. Ue M., Takeda M., Toriumi A., Kominato A., Hagiwara R., Ito Y.J. Electrochem Soc., 2003, 150: A499 [5]. Chang J.K., Lee M.T., Tsai W.T., Deng M.J., Sun I.W. Chem. Mater., 2009, 21:2688 [6]. Hasaninejad A., Zare A., Shekouhy M., Ameri Rad. J. J. Comb. Chem., 2010, 12: 844 [7]. Youseftabar-Miri L., Hosseinjani-Pirdehi H. Asian J. Green Chem., 2017, 1:56 [8]. Zolfigol M.A., Khazaei A., Moosavi-Zare A.R., Zare A., Kruger H.G., Asgari Z., Khakyzadeh V., Kazem-Rostami M. J. Org. Chem., 2012, 77:3640 [9]. Sajjadifar S., Mohammadi-Aghdam S. Asian J. Green. Chem., 2017, 1:1 [10]. Abshirini Z., Zare A. Z. Naturforsch, 2018,73b:191 [11]. Vekariya R.L. J. Mol. Liq., 2017, 227:44 [12]. Rezayati S., Hajinasiri R., Hossaini Z., Abbaspour S. Asian J. Green Chem., 2018, 2:268 [13]. Moosavi-Zare A.R., Zolfigol M.A., Zarei M., Zare A., Khakyzadeh V., Hasaninejad A. Appl Catal A: Gen, 2013, 467:61 [14]. Mohammadi S., Abbasi M. Res. Chem. Intermed, 2015, 41:8877 [15]. Moosavi‐Zare A.R., Zolfigol M.A., Khaledian O., Khakyzadeh V. Darestani Farahani M., Gerhardus Kruger H. New J. Chem., 2014, 38:2342 [16]. Rezayati S., Rezaee Nezhad E., Hajinasiri R. Chin Chem. Lett., 2016, 27:974 [17]. Youseftabar-Miri L., Hosseinjani-Pirdehi H. Asian J. Green Chem., 2017, 1:56 [18]. Rezayati S., Salehi E., Hajinasiri R., Afshari Sharif Abad S. C. R. Chim., 2017, 20:554 [19]. Das P.J., Das D. Asian J. Green Chem., 2018, 2:11 [20]. Rezayati S., Sheikholeslami-Farahani F., Hossaini Z., Hajinasiri R., Afshari Sharif Abad S. Comb. Chem., 2016, 19:720 [21]. Poyafar F., Fallah-Mehrjardi M., Banitaba SH. Asian J. Green Chem., 2018, 2:96 [22]. Moosavi‐Zare A.R., Zolfigol M.A., Khaledian O., Khakyzadeh V. Chinese Journal of Catalysis, 2014, 35:573 [23]. Rezayati S., Sheikholeslami-Farahani F., Rostami-Charati F., Afshari Sharif Abad S. Rese. Chem. Intermed., 2016, 42:4097 [24]. Himaja M., Poppy D., Asif K. Int. J. Res. Ayurveda Pharm, 2011, 2:1079 [25]. Arzehgar Z., Sajjadifar S., Fekri M.H. Asian J. Nanosci Mater, 2019, 2:251 [26]. Karami M., Zare A. Org. Chem. Res. 2018, 4:174 [27]. Heravi M.M., Karimi N., Pooremami S. Adv. J. Chem., 2019, A 2:73 [28]. Kazemi E., Davoodnia A., Nakhaei A., Basafa S., Tavakoli-Hoseini N. Adv. J. Chem. A., 2018, 1:96 [29]. Kappe C.O. Eur. J. Med. Chem., 2000, 35:1043 [30]. Aron Z.D., Overman L.E. Chem. Commun, 2004, 253 [31]. Haggarty S.J., Mayer T.U., Miyamoto D.T., Fathi R., King R.W., Mitchison T.J., Schreiber S.L. Chem. Biol., 2000, 7:275 [32]. Yarim M., Sarac S., Kilic F.S., Erol K. IL. Farmaco, 2003, 58:17 [33]. Rovnyak G.C., Kimball S.D., Beyer B., Cucinotta G., Dimarco J.D., Gougoutas J., Hedberg A., Malley M., McCarthy J.P. J. Med. Chem., 1995, 38:119 [34]. Bruce M.A., Pointdexter G.S., Johnson G. PCT. Int. Appl WO., 1998, 98:33791 [35]. Sidler D.R., Larsen R.D., Chartrain M., Ikemoto N., Roberge C.M., Taylor C.S,. Li W., Bills G.F. PCT Int Appl WO., 1991, 99:07695. [36]. Naik N.S., Shastri L.A., Joshi S.D., Dixit S.R., Chougala B.M., Samundeeswari S., Holiyachi M., Shaikh F., Madar J., Kulkarni R., Sunagar V. Bioorg. Med. Chem., 2017, 25:1413 [37]. Lala J., Sharmaa M., Guptab S., Parashara P., Sahua P., Agarwala D.D. J Mol Catal A: Chem., 2012, 352:31 [38]. Kolvari E., Koukabi N., Armandpour O. Tetrahedron, 2014, 70:1383 [39]. Zhang Y., Wang B., Zhang X., Huang J., Liu C. Molecules, 2015, 20:3811 [40]. Saher L., Makhloufi-Chebli M., Dermeche L., Boutemeur-Khedis B., Rabia C., Silva A.M.S., Hamdi M. Tetrahedron Lett., 2016, 57:1492 [41]. Azuaje J., Tubío C.R., Escalante L., Gómez M., Guitián F., Coelho A., Caamaño O., Gil A., Sotelo E. Appl Catal A: Gen., 2017, 530:203 [42]. Davarpanah J., Sayahi M.H., Ghahremani M., Karkhoe S . J. Mol. Struct., 2019, 1181:546 [43]. Farhadi A., Noei J., Aliyari R.H., Albakhtiyari M., Takassi M.A. Res. Chem. Intermed, 2016, 42:1401 [44]. Wang J-H., Zhang E., Tangn G-M., Wangn Y-T., Cui Y-Z., Ng S.W. J. Solid State Chem., 2016, 241:86 [45]. Maleki A., Paydar R. React Funct Polym., 2016, 109:120 [46]. Barbero M., Cadamuro S., Dughera S. Green Chem., 2017, 19:1529 [47]. Mondal J., Sen T., Bhaumik A. Dalton Trans, 2012, 41:617
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2019.4.2 Synthesis of nanomaterials Synthesis, analysis and application of noble metal nanoparticles by Cucurbita pepo using different solvents Synthesis, analysis and application of noble metal nanoparticles by Cucurbita pepo using different solvents Kaur Prabhpreet Department of Biotechnology, Guru Nanak Girls College, Model Town, Ludhiana, India Komal Ratika Department of Biotechnology, Guru Nanak Girls College, Model Town, Ludhiana, India 01 10 2019 2 4 376 398 12 01 2019 21 01 2019 Copyright © 2019, Sami Publishing Company (SPC). 2019 https://www.ajnanomat.com/article_85827.html

The synthesis of metal nanoparticles through biological approach is an important aspect of biotechnology. The biological method provides a feasible alternative as compared to chemical and physical methods. The synthesis of metal nanoparticles using plant derived materials is an effective method for the production of metal nanoparticles.This work reports the rapid biosynthesis of silver nanoparticles from plant extract Cucurbita pepo. The plant extract was prepared using two different solvents i.e. double distilled water and 70% ethanol by hot percolation method. The sample was subjected to different reaction conditions i.e. pH (3, 7, 9) and temperature (0 °C, r.t., 37 °C, 60 °C, 100°C). The preliminary characterization of nanoparticles was done by using UV-VIS spectrophotometer at different wavelengths on the basis of color of the sample obtained from different solvents. Confirmatory analysis of the synthesized silver nanoparticles were done by energy dispersion X-ray spectrometer (EDS) and transmission electron microscopy (TEM). These biosynthesized silver nanoparticles were used in the evaluation of antimicrobial activity that was done by Minimum Inhibitory concentration method against different pathogenic strains. The detection, analysis of presence of metal ions in the synthesized silver nanoparticles by using UV-VIS spectrophotometer at 630 nm.

Transvermillion Silver nanoparticles Cucurbita pepo UV-VIS spectrophotometer Energy dispersion X-Ray Spectrometer (EDS) Transmission Electron Microscopy (TEM) Antimicrobial activity
[1]. Iravani S., Korbe Kaudi H., Zoltaghari B. Research of Pharma Science, 2014, 916:385 [2]. Dibyender S., Datta R., Hannigan R. Developments in Environmental Science, 2011, 5:150 [3]. Kalirawana T.C., Sharma P., Joshi S.C. International Journal of Pharma and Bio Sciences, 2015, 6:772 [4]. Ghorbani-Choghamarani A., Mohmmadi M. Tahernia Z. Journal of the Iranian Chemical Society, 2019, 16:411 [5]. Annadhasan M., Muthukumarasamyvel T., Sankar Babu V.R., Rajendiran N. ACS Sustainable Chem. Eng., 2014, 2:887 [6]. Arya V., Komal R., Kaur M., Goyal A.. Pharmacologyonline, 2011, 3:118
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2019.4.3 Physical chemistry A DFT, NBO, RDG, MEP and thermodynamic sudy of acrolein interaction with pristine and Ga‒doped boron phosphide nanotube A DFT, NBO, RDG, MEP and thermodynamic sudy of acrolein interaction with pristine and Ga‒doped boron phosphide nanotube Rezaei Sameti Mahdi Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, 65174, Iran 01 10 2019 2 4 399 412 27 11 2018 03 03 2019 Copyright © 2019, Sami Publishing Company (SPC). 2019 https://www.ajnanomat.com/article_85846.html

In this research, the interaction of the acrolein (Acr) molecule with the pristine and Ga‒doped boron phosphide nanotube (BPNTs) was investigated using the density functional theory (DFT). The electrical, quantum, thermodynamic properties, natural bond orbital (NBO), reduced density gradient (RDG), atom in molecule (AIM), and molecular electrostatic potential (MEP) for all studied models were calculated and analyzed. The results revealed that the thermodynamic parameters (∆H and ∆G) values for all studied models were negative and favorable in thermodynamic point of view. By doping the Ga atom and adsorbing Acr molecule, the HOMO, LUMO, gap energy, conductivity, and optical properties of the nanotube altered slightly from the original values. Whereas, the global hardness and chemical potential of the Ga-doped increased slightly from pristine state and the activity of system decreased slightly from the original state. In addition, the AIM parameters and RDG results showed that the covalent bonding interaction between Acr and BPNTs was so strong.

Acrolein BPNTs Ga doped DFT MEP
[1]. Seaman V.Y., Bennett D.H., Cahill T.M. Environ. Sci. Technol., 2007, 41:6940 [2]. Woodruff T.J., Wells E.M., Holt E.W., Burgin D.E., Axelrad D.A. Env. Health Perspect, 2007, 115:410 [3]. Niosh Pocket Guide to Chemical Hazards, Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health, 2007 [4]. Benz L., Haubrich J., Quiller R.G., Friend C.M. Surface Sci., 2009, 603:1010 [5]. Abraham K., Andres S., Palavinskas R., Berg K., Appel K.E., Lampen A. Mol. Nutr. Food Res., 2011, 55:1277 [6]. Feng Z., Hu W., Hu Y., Tang M. Proc. National Academy. Sci., 2006, 103:15404 [7]. Gomes R., Meek M.E., Eggleton M. Concise International Chemical Assessment Document, World Health Organization, Geneva, 2002, 924153043X [8]. Grafstrom R.C., Dypbukt J.M., Willey J.C., Sundqvist K., Edman C., Atzori L., Harris C.C. Cancer Res., 1988, 48:1717 [9]. Iijima S. Nature,1991, 354:56 [10]. Mirzaei M., Giahi M. Physica E., 2010, 42:1667 [11]. Rezaei‒Sameti M. Physica B., 2012, 407:22 [12]. Baei M.T., Moghimi M., Torabi Varasteh Moradi A. Comput. Theor. Chem., 2011, 972:14 [13]. Anurag S., Maya S., Neha T. J. Comp. Theo. Nanosci., 2012, 9:1693 [14]. Rezaei‒Sameti M. Phys. B., 2012, 407:3717 [15]. Rezaei Sameti M., Amirian B. Asian J. Nanosci. Mat., 2018, 1:262 [16]. Rezaei‒Sameti M. Quantum Matt.,2013, 2:396 [17]. Baei M.T. Monat. Chem. Mon., 2012, 143:881 [18]. Baei M.T., Ahmadi Peyghan A., Moghimi M. Monat. Chem. Mon., 2012, 143:1627 [19]. Mirzaei M., Meshkinfam M. Solid. State. Sci., 2011, 13:1926 [20]. Rezaei‒Sameti M. Arabian J. Chem., 2015, 8:168 [21]. Esrafili M.D. J. Fullerenes, Nanotubes.Carbon Nanostr., 2015, 23:142 [22]. Ahmadi Peyghan A., Baei M.T., Moghimi M., Hashemian S. J. Clust. Sci., 2013, 24:49 [23]. Beheshtian J., Baei M.T. Surface Sci., 2012, 606:981 [24]. Baei M.T., Varasteh Moradi A., Torabi P., Moghimi M. Monatsh. Für. Chem. Chem. Monthly., 2012, 143:37 [25]. Baei M.T., Varasteh Moradi A., Moghimi M., Torabi P. Comp. Theo. Chem., 2011, 967:179 [26]. Kanania Y., Baei M. T., Varasteh Moradia A., Soltanic A. Physica E., 2014, 59:66 [27]. Zahra Sayyad‒Alangi S., Baei M.T., Hashemian S. J. Sulfur Chem., 2013, 34:407 [28]. Zahra Sayyad‒Alangi S., Hashemian S., Baei M. T. J. Phosphorus, Sulfur, Silicon Related Elements., 2014, 189:453 [29]. Soltani A., Ramezani Taghartapeh M., Mighani H., Pahlevani A.A., Mashkoor R. App. Surface Sci., 2012, 259:637 [30]. Soleymanabadi H., Kamfiroozi M., Ahmadi A. J. Mol. Model., 2012, 18:2343 [31]. Rezaei‒Sameti M., Saki F. Phys. Chem. Res., 2015, 3:265 [32]. Rezaei‒Sameti M., Dadfar E. A. Iranian J. hys. Res., 2015, 15:41 [33]. Rezaei‒Sameti M., Yaghoobi S. Comp. Condens Mat., 2015, 3:21 [34]. Bader R.F.W. Acc. Chem. Res., 1985, 18:9 [35]. Biegler‐König F., Schönbohm J. J. Computational Chem., 2002, 23:1489 [36]. Shahabi M., Raissi H. J. Incl. Phenom. MAcrocyc. Chem., 2016, 84:99 [37]. Johnson E. R., Keinan S., Mori‒Sanchez P. J. Am. Chem. Soc., 2010, 132:6498 [38]. Runge E., Gross E. K. U. Phy. Rev. Lett., 1984, 52:997
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2019.4.4 Organic Chemistry Highly effectual synthesis of 4H-pyrano [2, 3-c] pyrazoles using N1, N1, N2, N2-tetramethyl-N1, N2-bis (sulfo) ethane-1, 2-diaminium trifluoroacetate as a dual-functional catalyst Highly effectual synthesis of 4H-pyrano [2, 3-c] pyrazoles using N1, N1, N2, N2-tetramethyl-N1, N2-bis (sulfo) ethane-1, 2-diaminium trifluoroacetate as a dual-functional catalyst Karami Mostafa Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran Maghsoudi Maryam Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran Merajoddin Maria Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran Zare Abdolkarim Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran 01 10 2019 2 4 413 420 22 01 2019 03 04 2019 Copyright © 2019, Sami Publishing Company (SPC). 2019 https://www.ajnanomat.com/article_85847.html

In this research study, highly effective preparation of 4H-pyrano[2, 3-c]pyrazoles was discussed. The one-pot multi-component reaction between the malononitrile, arylaldehydes and 3-methyl-1-phenyl-1H-pyrazol-5 (4H)-one using protic acidic ionic liquid N1, N1, N2, N2-tetramethyl-N1, N2-bis (sulfo) ethane-1, 2-diaminium trifluoroacetate ([TMBSED][TFA]2) under the mild and solvent-free conditions have furnished the title compounds with high yields in short times. Additionally, an attractive mechanism considering dual-functionality of the catalyst was proposed ([TMBSED][TFA]2 with acidic and basic sites).

4H-pyrano[2 3-c]pyrazole Protic acidic ionic liquid N1 N1 N2 N2-tetramethyl-N1 N2-bis (sulfo) ethane-1 2-diaminium trifluoroacetate ([TMBSED][TFA]2) Arylaldehyde 3-methyl-1-phenyl-1H-pyrazol-5 (4H)-one
[1]. Wua T.Y., Su S.G., Gung S.T., Lin M.W., Lin Y.C., Ou-Yang W.C., Sun I.W., Lai C.A. J Iranian Chem Soc., 2011, 8:149 [2]. Sakaebe H., Matsumoto H. Electrochem Commun, 2003, 5:594 [3]. Gou S.P., Sun I.W. Electrochim Acta, 2008, 53:2538 [4]. Ue M., Takeda M., Toriumi A., Kominato A., Hagiwara R., Ito Y. Electrochem Soc., 2003, 150: A499 [5]. Chang J.K., Lee M.T., Tsai W.T., Deng M.J., Sun I.W. Chem Mater., 2009, 21:2688 [6]. Youseftabar-Miri L., Hosseinjani-Pirdehi H. Asian J Green Chem., 2017, 1:56 [7]. Zolfigol M.A., Khazaei A., Moosavi-Zare A.R., Zare A., Kruger H.G., Asgari Z., Khakyzadeh V., Kazem-Rostami M. J Org Chem., 2012, 77:3640 [8]. Rezayati S., Hajinasiri R., Hossaini Z., Abbaspour S. Asian J Green Chem., 2018, 2:268 [9]. Sajjadifar S., Mohammadi-Aghdam S. Asian J. Green Chem., 2017, 1:1 [10]. Vekariya R.L. J Mol Liq., 2017, 227:44 [11]. Kordrostami Z., Zare A. J Appl Chem Res., 2018, 12:42 [12]. Moosavi-Zare A.R., Zolfigol M.A., Zarei M., Zare A., Khakyzadeh V., Hasaninejad A. Appl Catal A., 2013, 467:61 [13]. Momeni A.R., Samimi H., Vaezzadeh H. Chem Methodol, 2018, 2:253 [14]. Kamran S., Amiri Shiri N. Chem Methodol, 2018, 2:23 [15]. Elziaty A.K., Mostafa O.E.A., El-Bordany E.A., Nabil M., Madkour H.M.F. Int J Sci Eng Res., 2014, 5:727 [16]. Sangani C.B., Mungra D.C., Patel M.P., Patel R.G. Chin Chem Lett., 2012, 23:57 [17]. Kuo S.C., Huang L.J., Nakamura H. J Med Chem., 1984, 27: 539 [18]. Colotta V., Catarzi D., Varano F., Melani F., Filacchioni G., Cecchi L., Trincavelli L., Martini C., Lucacchini A. Il Farmaco, 1998, 53:189 [19]. Wang J.L., Liu D., Zheng Z.J., Shan S., Han X., Srinivasula S.M., Croce C.M., Alnemri E.S., Huang Z. PNAS., 2000, 97:7124 [20]. Zaki M.E.A., Soliman H.A., Hiekal O.A., Rashad A.E. Z Naturforsch, 2006, 61c:1 [21]. Abdel-Rahman A.H., Keshk E.M., Hanna M.A., El-Bady S.M. Bioorg Med Chem., 2004, 12:2483 [22]. Abdelrazek F.M., Metz P., Kataeva O., Jäger A., El-Mahrouky S.F. Arch Pharm, 2007, 340:543 [23]. Foloppe N., Fisher L.M., Howes R., Potter A., Robertson A.G.S., Surgenor A.E. Bioorg Med Chem., 2006, 14:4792 [24]. Eskandari K., Karami B., Khodabakhshi S. Catal Commun, 2014, 54:124 [25]. Farahi M., Karami B., Sedighimehr I., Mohamadi Tanuraghaj H. Chin Chem Lett., 2014, 25:1580 [26]. Iravani N., Keshavarz M., Shojaeian Kish H.A., Parandvar R. Chin J Catal., 2015, 36:626 [27]. Maleki B., Eshghi H., Barghamadi M., Nasiri N., Khojastehnezhad A., Ashrafi S.S., Pourshiani O. Res Chem Intermed., 2016, 42:3071 [28]. Shi D., Mou J., Zhuang Q., Niu L., Wu N., Wang X. Synth Commun, 2004, 34:4557 [29]. Konakanchi R., Gondru R., Nishtala V.B., Kotha L.R. Synth Commun, 2018, 48:1994 [30]. Jin T.S., Zhao R.Q., Li T.S. ARKIVOK., 2006, xi:176 [31]. Maleki B., Nasiri N., Tayebee R., Khojastehnezhad A., Akhlaghi H.A. RSC., 2016, Adv 6: 79128 [32]. Vafajoo Z., Hazeri N., Maghsoodlou M.T., Veisi H. Chin Chem Lett., 2015, 26:973 [33]. Himaja M., Poppy D., Asif K. Int J Res Ayurveda Pharm., 2011, 2:1079 [34]. Moosavi-Zare A.R., Zolfigol M.A., Zarei M., Zare A., Khakyzadeh V. J Mol Liq., 2015, 211:373 [35]. Arzehgar Z., Sajjadifar S., Fekri M.H. Asian J Nanosci Mater., 2019, 2:251 [36]. Moosavi-Zare A.R., Zolfigol M.A., Noroozizadeh E., Khaledian O., Shirmardi Shaghasemi B. Res Chem Intermed., 2016, 42:4759 [37]. Momeni A.R., Samimi H., Vaezzadeh H. Chem Method., 2018, 2:260 [38]. Behbahani F.K., Shahbazi R. Chem Method., 2018, 2:270 [39]. Kazemi E., Davoodnia A., Basafa S., Nakhaei A., Tavakoli-Hoseini N. Adv J Chem A., 2018, 1:96
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2019.4.5 Nanochemistry Comparison of TiO2 nanoparticles impact with TiO2/CNTs nano hybrid on microbial community of staphylococcus Comparison of TiO2 nanoparticles impact with TiO2/CNTs nano hybrid on microbial community of staphylococcus Allaedini Ghazaleh Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia Tasirin Siti Masrinda Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia 01 10 2019 2 4 421 424 23 10 2018 09 03 2019 Copyright © 2019, Sami Publishing Company (SPC). 2019 https://www.ajnanomat.com/article_86077.html

There has been an increase in carbon nanotubes (CNT) uses in different industries; however, its impact on the environment is still under a vast consideration and investigation. In this research study, the soil with staphylococcus has been exposed to pure TiO2 and TiO2/CNT. Also, the community of the staphylococcus was studied using the scanning electron microscopy (SEM). It has been observed that, the microbial community has decreased tremendously after the titanium oxide was doped with CNT. This study suggests that, the TiO2/CNTs can be a much more effective potential material for altering the microbial community compared with the TiO2. These findings could be useful for creating antibacterial agents for the soil using TiO2/CNTs nano hubrid .Further investigation of the TiO2/CNTs mechanism could prove useful for industrial uses or altering microbial communities.

TiO2 TiO2/CNTs microbial community effect of CNT Staphylococcus
[1]. Harris L.G., Foster S.J., Richards R.G. Eur Cell Mater , 2002, 4:1 [2]. Roszak D.B., Colwell R.R. Microbiological Reviews, 1987, 51:365 [3]. Chudobova D., Dostalova S., Blazkova I., Michalek P., Ruttkay-Nedecky B., Sklenar M., Nejdl L. International journal of environmental research and public health , 2014, 11:3233 [4]. Von Nussbaum F., Brands M., Hinzen B., Weigand S., Häbich D. Angewandte Chemie International Edition, 2006, 45:5072 [5]. Kang S, Pinault M., Pfefferle D.L., Elimelech M. Langmuir, 2007, 23:8670 [6]. Tong Z., Bischoff M., Nies F.L., Myer P., Applegate B., Turco F.R. Environmental science & technology, 2012, 46:13471 [7]. Chung H., Son Y., Yoon T.K., Kim S., Kim W. Ecotoxicology and Environmental Safety, 2011, 74:569 [8]. Ozaki A. Assessing the Effects of Titanium Dioxide Nanoparticles on Microbial Communities in Stream Sediment Using Artificial Streams and High Throughput Screening. 2013 [9]. Tsuang Y.H., Sun J.S., Huang Y.C., Lu C.H., Chang W.H.S., Wang C.C. Artificial Organs, 2008, 32:167 [10]. Allaedini G., Aminayi P., Tasirin S.M. Chemical Engineering Research and Design, 2016, 112:163 [11]. Romero L., Binions R. Langmuir , 2013, 29:13542 [12]. Hardcastle F.D. Journal of the Arkansas Academy of Science, 2011, 65:43 [13]. Sadeghian S., Khanlari M.R. International Journal of Applied Physics and Mathematics, 2014, 4:363
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2019.4.6 Application of nanomaterial Antibacterial activity of magnesium oxide nanostructures prepared by hydrothermal method Antibacterial activity of magnesium oxide nanostructures prepared by hydrothermal method Rukh Shah Special Centre for Nanoscience, Department of Physics, NIT Srinagar, J&K, India-190006 Sofi Ashaq Hussain Special Centre for Nanoscience, Department of Physics, NIT Srinagar, J&K, India-190006 Shah Mohammad Ashraf Special Centre for Nanoscience, Department of Physics, NIT Srinagar, J&K, India-190006 Yousuf Shayista SSM College of Engineering and Technology, Baramulla, J&K, India-193121 01 10 2019 2 4 425 430 14 12 2018 07 05 2019 Copyright © 2019, Sami Publishing Company (SPC). 2019 https://www.ajnanomat.com/article_88468.html

In this research study, the magnesium oxide nanoparticles were synthesized using an inexpensive and simple hydrothermal method. A pure magnesium metal powder, de-ionized water, and hydrogen peroxide (H2O2) was utilized as the starting materials. The synthesized MgO was dense, uniformly distributed with a relatively spherical shape, without any cracks and voids as confirmed by the scaning electron microscopy (SEM) analysis. The structure was crystalline with a high purity. No other peak corresponding to any other material or metal could be ascertained from powder X-ray diffraction (XRD) pattern. The crystallite size of the prepared samples was found to be nearly 18 nm which was favorable for antibacterial activity. The antibacterial activity of MgO nanostructures was carried out by using disc diffusion method. The inhibition zones of diameters = 1 mm were observed in case of salmonella and Staphylococcus aureus, however, in case of E. Coli inhibition zones of diameter = 2 mm was obtained.

Hydrothermal method Disc diffusion method Antimicrobial activity
[1]. Leung Y.H., Ng A.M., Xu X., Shen Z., Gethings L.A., Wong M.T., Lee P.K. Small, 2014, 10:1171 [2]. Krishnamoorthy K., Manivannan G., Kim S.J., Jeyasubramanian K., Premanathan M. Journal of Nanoparticle Research, 2012, 14:1063 [3]. Jin T., He Y. Journal of Nanoparticle Research, 2011, 13:6877 [4]. Bindhu M.R., Umadevi M., Micheal M.K., Arasu M.V., Al-Dhabi N.A. Materials Letters, 2016, 166:19 [5]. Zhu X., Wu D., Wang W., Tan F., Wong P. K., Wang X., Qiao X. Journal of Alloys and Compounds, 2016, 684:282 [6]. Karthik K., Dhanuskodi S., Kumar S.P., Gobinath C., Sivaramakrishnan S. Materials Letters, 2017, 206:217 [7]. Sundrarajan M., Suresh J., Gandhi R.R. Digest journal of nanomaterials and biostructures, 2012, 7:983 [8]. Tang Z.X., Fang X.J., Zhang Z.L., Zhou T., Zhang X.Y., Shi L.E. Brazilian Journal of Chemical Engineering, 2012, 29:775 [9]. Hirota K., Sugimoto M., Kato M., Tsukagoshi K., Tanigawa T., Sugimoto H. Ceramics International, 2010, 36:497 [10]. Rao Y., Wang W., Tan F., Cai Y., Lu J., Qiao X. Applied Surface Science, 2013, 284:726 [11]. Ohira T., Kawamura M., Fukuda M., Alvarez K., Özkal B., Yamamoto O. Journal of materials engineering and performance, 2010, 19:374 [12]. Rahman M.S., Rashid M.A. Oriental Pharm. Exp. Med., 2008, 8:47 [13]. Gokulakrishnan R., Ravikumar S., Raj J.A. Asian Pacific Journal of Tropical Disease, 2012, 2:411 [14]. Yamamoto O., Ohira T., Alvarez K., Fukuda, M. Materials Science and Engineering: B, 2010, 173:208
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2019.4.7 Synthesis of nanomaterials Comparative investigations of synthesis TiO2 Nano-Particles from four different types of alcohols by Sol-Gel method and evaluation of their antibacterial activity Comparative investigations of synthesis TiO2 Nano-Particles from four different types of alcohols by Sol-Gel method and evaluation of their antibacterial activity Ambaraka Mariam Farag Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya Aljazwia Fawzia Muftah Department of Botany, Faculty of Science, University of Benghazi, Benghazi, Libya Alsupikhe Randa Fawzi Department of Botany, Faculty of Science, University of Benghazi, Benghazi, Libya 01 10 2019 2 4 431 438 12 04 2019 26 05 2019 Copyright © 2019, Sami Publishing Company (SPC). 2019 https://www.ajnanomat.com/article_89679.html

TiO2 nanoparticles were synthesized using a simple reaction of TiCl4 with different types of primary and secondary alcohols. Four different alcohols (ethanol, isopropyl, isobutyl, and isobentyl alcohol) were investigated. The experiments were carried out to compare the products of the reactions with different precursors. The gelatine products were calcined at 400 °C and at 1000 °C in a box furnace and the effect of calcination temperature on the feature of nano-particles was studied. The synthesized TiO2 nanoparticles were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results revealed that the average particle size was 8.9-18.4 nm. The antibacterial result of titanium dioxide nanoparticles at four types of bacteria was two gram-positive (Staphylococcus aureus and Streptococcus sp.) and two gram-negative (Escherichia coli and Klebsiella sp.). Also, nanoparticles titanium dioxide did not have any effect on these types of bacteria. The sol-gel method could be used for applications that involve nano-crystalline TiO2 with anatase phase with low cost and simple preparation.

TiO2 nanoparticles Synthesis Sol-gel method alchols Antibacterial study
[1]. Wolfgang G.K., SemmLer-Behnke M., Qasim Ch. Nano Today, 2010, 5:165 [2]. Baolin H., Juei J.T., Kong Y.L., Hanfan Liu. Journal of Molecular Catalysis A: Chemical, 2004, 221:121 [3]. Hee Dong J., Kim Seong-Kil. Materials Research Bulletin, 2001, 36:627 [4]. Sara M., Askari M., Sasani Ghamsari M. Journal of Materials Processing Technology, 2007, 189:296 [5]. Sundrarajan M., Gowri S. Chalcogenide Lett , 2011, 8:447 [6]. Samira B., Kamyar Sh., Bee Abd Hamid Sh. Journal of Chemistry 2013, 2013:5 pages [7]. Sara M., Askari M., Sasani Ghamsari M. Journal of Materials Processing Technology, 2007, 189: 296 [8]. Mahmoud B., Masoud M., Sahar E. Journal of Theoretical and Applied Physics, 2017, 11:79 [9]. Surhayani Jefri SN., Abdullah A.H., Mohammad E.N. Asian Journal of Green Chemistry, 2019, 3:271 [10]. Azaroff L.V., Elements of X-Ray Crystallography, McGraw-Hill, New York, 1968, 552 [11]. Haider A.J., AL-Anbari R.H., Khadim G.R. TMREES, 2017, 119:332 [12]. Sirimahachai U., Phongpaichit S., Wongnawa S. Songklanakarin J Sci Technol., 2009, 31:517 [13]. Bonnet M., Massard C., Philippe V., Camares O., Awitor K.O. J. Biomater. Nanobiotechnol., 2015, 6: 213 [14]. Jahangirian H., Haron M. J., Ismail M. H. S., Rafiee-Moghaddam R., Afsah-Hejri L., Abdollahi Y., Rezayi M., Vafaei N. Digest J. Nanomater. Biostru., 2013, 8:1263 [15]. Mahdy S.A., Mohammed W.H., Emad H., Abdul Kareem H., Shamel R., Mahdi S. Journal of Babylon University/Pure and Applied Sciences/ 2017, 25:955
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/AJNANOMAT.2019.4.8 Physical chemistry A computational study of thermophysical, HOMO, LUMO, vibrational spectrum and UV-visible spectrum of cannabicyclol (CBL), and cannabigerol (CBG) using DFT A computational study of thermophysical, HOMO, LUMO, vibrational spectrum and UV-visible spectrum of cannabicyclol (CBL), and cannabigerol (CBG) using DFT Sarker Md Nuruzzaman Department of Physics, European University of Bangladesh, Dhaka-1216, Bangladesh Kumer Ajoy Department of Chemistry, European University of Bangladesh, Dhaka-1216, Bangladesh Islam Mohammad Jahidul Department of Physics, European University of Bangladesh, Dhaka-1216, Bangladesh Paul Sunanda Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Hathazari-4334, Bangladesh 01 10 2019 2 4 439 447 16 06 2019 12 07 2019 Copyright © 2019, Sami Publishing Company (SPC). 2019 https://www.ajnanomat.com/article_91528.html

Cannabicyclol, also called CBL, is one of the least known and studied isomer of cannabinoids in the cannabis plant, and it is the precursor of the different cannabinoids found in marijuana plant having with widespread medicinal use. In this work, the thermophysical properties of CBL such as, free energy, entropy, dipole moment, binding energy, nuclear energy, electronics energy, and heat of formation were estimated using density functional theory for developing use as pharmaceutical pursues. In addition, the chemical reactivity properties including highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), HOMO-LUMO gap, ionization potential, electronegativity, hardness, softness, and electron affinity were evaluated. It was found that, the magnitude of HOMO was -8.98 and -8.53, LUMO was 0.19, -0.31 and HOMO –LUMO gap was -9.17 and -8.22 eV of CBL and CBG, respectively. The vibrational spectrum and electronics spectrum were simulated for identification and characterization. These studies provided a proper and predictable data for further use in any chemical and pharmaceutical purpose.

Cannabis HOMO LUMO DFT vibrational spectrum and electronics spectrum
[1]. Andre C.M.H., Francois j. Frontiers in plant science, 2016, 7:19 [2]. Butsic V.B., Jacob C. Environmental Research Letters, 2016, 11:044023 [3]. Mukherjee A., Chandra Roy S., De Bera S., Jiang H.E., Li, Li X., Li C.S., Bera S. Genetic Resources and Crop Evolution, 2008, 55:481 [4]. Christensen H.D.F., RoI Gidley J.T., Rosenfeld R., Boegli G., Testino L., Brine D.R., Pitt C.G., Wall M.E. Science, 1971, 172:165 [5]. Mariani J.J.B., Daniel H., Margaret L., Frances R. 2011. Drug and alcohol dependence, 2011, 113:249 [6]. Huestis M.A.G., David A., Heishman S.J., Preston K.L., Nelson R.A., Moolchan E.T., Frank, R.A. Archives of General Psychiatry, 2001, 58:322 [7]. Lane S.D.C., Don R., Tcheremissine O.V., Lieving L.M., Pietras C.J. Neuropsychopharmacology, 2005, 30:800 [8]. Fleming M.P.C., Robert C. J Int Hemp Assoc, 1998, 5:280 [9]. Kumar R.C., Pertwee R.G. Anaesthesia, 2001, 56:1059 [10]. Islam M.J., Kumer A., Sarker N., Paul S., Zannat A. Advanced Journal of Chemistry-Section A, 2019, 2:316 [11]. Islam M.J., Sarker N., Kumer A., Paul S. International journal of Advanced Biological and Biomedical Research, 2019, 7:318 [12]. Ajoy K., Ahmed B., Sharif M , Al-Mamun A. Asian journal of physical and chemical science, 2017, 4:1 [13]. Kumer A., Sarkar M., Nuruzzaman P.S. Eurasian Journal of Environmental Research, 2019, 3:1 [14]. Kumer A., Khan W. Proceeding of 8th international conference on green chemistry, 8th IUPAC Conference-2018, shangri-la hotel, bangkok, Thailand, 2018 [15]. Kumer A., Sarker M.N., Paul S. International Journal of Chemistry and Technology, 2019, 3:26 [16]. Kumer A., Sarker M.N., Paul S. Turkish Computational and Theoretical Chemistry, 2019, 3:59 [17]. Kumer A., Sarker M.N., Paul S., Zannat A. Advanced Journal of Chemistry-Section A, 2019, 2:190 [18]. Hossain M.I., Kumer A. Asian Journal of Physical and Chemical Sciences, 2017, 4:1 [19]. Hossain M.I., Kumer A. Asian journal of Chemical Science, 2017, 3:1 [20]. Hossain M.I., Kumer A., Begum S.H. Asian Journal of Physical and Chemical Science, 2018, 5:1 [21]. Howard A., McIver J., Collins J. Hypercube Inc., Waterloo; 1994 [22]. Tsuneda T.S., Suzuki J.W., Satoshi Hirao K. The Journal of Chemical Physics, 2010, 133: 174101