Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2019.3.1 Inorganic chemistry Synthesis and Characterization of Noble Metal Nanowires by Electrodeposition in Porous Anodic Alumina Membranes Synthesis and Characterization of Noble Metal Nanowires by Electrodeposition in Porous Anodic Alumina Membranes Alya'a Jabbar Ahmed Directorate of Scholarship and Cultural Relations, Ministry of Higher Education and Scientific Research, Baghdad-Iraq. 01 04 2019 2 2 120 130 29 09 2018 07 12 2018 Copyright © 2019, Sami Publishing Company (SPC). 2019 https://www.ajnanomat.com/article_81176.html

Electrochemical deposition is a very efficient method for producing many types of modern materials. This method is not expensive and does not have a limit for sample size. In our work, the preparation of Ag and Au nanowires is presented. The obtained nanowires had different diameter and length, which were tunable by template porous material and time of deposition, respectively. The quality of the prepared wires was dependent also on deposition mode. The smallest wires of the diameter around 29 nm were prepared in porous anodic alumina oxide obtained from sulfuric acid. The largest ones, around 44 nm, were produced in oxalic acid. The morphology and surface structure of the AAO films were examined before and after electrodeposition by scanning electron microscopy (SEM), atomic force microscope (AFM), and x-ray diffraction spectroscopy.

AAO template Ag nanowires Au nanowire Metal- phenothiazine complex
S.Cattarin, D. Kramer, A.Lui, M.M. Musiani (2007) J. Phys. Chem. 34:12643-12649. X. Teng, D. Black, N J. Watkins, Y. Gao , H. Yang (2003) Nano Lett. 3:261–264. S R. Nicewarner-Peña, R. G. Freeman, B D. Reiss, L. He, D. J. Peña, I. D. Walton, R. Cromer, Christine D. Keating, M J. Natan(2001)Science, 294:137–141. P V. Kamat (2002) J. Phys. Chem. B , 106: 7729-7744. L A. Dick, A D. McFarland, C L. Haynes, R P. Van Duyne (2002) J. Phys. Chem. B,106: 853–860. JH. Fang, P. Spizzirri , A.Cimmino ,S. Rubanov , S.Prawer (2009) Nanotechnology, 20: 065706. J. Yin, J. Li, W. Jian, A. J. Bennett, J. M. Xu (2001) Appl. Phys. Lett. 79:1039. J.Ahmed, A. M. Alsammarraie, W. A.Mahmmood .Lambert Academic Publishing (2012). W. A.Mahmmood, A. M. Alsammarraie, A. J.Ahmed (2013) Asian J. Chem.,25: 4035-4038. W. Lee, M. Alexe, K. Nielsch, U. Gösele (2005) Chem. Mater.,17: 3325–3327. K. Ounadjela, R. Ferré, L. Louail, J. M. George, J. L. Maurice, L. Piraux ,S. Dubois (1997) Journal of Applied Physics 81: 5455. O. Jessensky, F. Mu¨ller, U. Go¨sele (1998) Appl. Phys. Lett., 72: 1173-1175. Y. Peng, HL.Zhang, SL. Pan, HL.Li (2000) Journal of Applied Physics 87:7405. D.Xu,Y.Xu,D.Chen,G.Guo,L.Gui,Y.Tang(2000) Chemical Physics Letters, 325: 340-344. Y. Li, M. Zheng, L.Ma, W.Shen. (2006) Nanotechnology 17: 5101–5105. J.H.Yuan,W.Chen,R.J.Hui,Y.L.Hu,X.H.Xia (2006) Electrochimica Acta, 51: 4589-4595. M.Alias,A.M.Seewan,C.Shakir,F.I.Mohammad (2014) Int.J Pharm.,4:126-132. A.M.Hammam,M.A.,ElGhanami,Z.A.,Khafagi,M.S.Alsalimi,S.A.,Ibrahim(2015)J.Mater.Environ.Sci.,6:1596-1602. H.K.Jabur, M. F. Alias, T. A. Kareem (2012) Baghdad Science J.,9: 511-520. M.F.Alias, D. H. Mahal (2013) IJSR., 6: 1469- 1476. M.F.Alias,M.O.Hamza,T.A.Kareem (2011) J.of AlNahrain University,4:10-18. M.Alias,H.Kassum,C.Shakir(2013) JKSUS.,25:157-166. J.Ahmed and A. M. Alsammarraie, (2018) Asian J. Chem.,30: 1608-1612. B.N. Figgis, M. A. Hitchman "Ligand Field Theory And its Application" (2000) Wiley-VCH, New York, Singapore, Toronto. Mohamed, I. Kani, A. O. Ramirez, J. P. Fackler (2004) Inorg. Chem.,43:3833–3839. W.-B. Zhao, J.-J. Zhu, and H.-Y. Chen (2003) Journal of Crystal Growth, 258:176– 180. Q. Xu, G.Meng, X. Wu, Q. Wei, M. Kong, X. Zhu, Z. Chu (2009) hem. Mater., 21: 2397–2402.
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2019.3.2 Application of nanomaterial Nano Fabrics in the 21st century: a review Nano Fabrics in the 21st century: a review Haque Munima Research fellow, Relevant Science & Technology Society, Bangladesh 01 04 2019 2 2 131 148 17 11 2018 29 12 2018 Copyright © 2019, Sami Publishing Company (SPC). 2019 https://www.ajnanomat.com/article_81050.html

ABSTRACT: Nano technology refers to enhancing the function and delivering the upcoming smart solutions to products at the nanoscale level. It relates to organizing the molecules for altering in dimension and characteristic for improvement like smart fabric. These fabrics could assist producers with the added prominence on a standard of living, visual attraction, and system wanted technological produces. Nanosize particles can unveil unpredicted characteristics dissimilar from the bulk matter. The fundamental principle is that the features could radically be altered after the material is decreased to the nanometer scale. Nanotechnology has multipurpose functions in fabric manufacturing in producing the stain and wrinkles defiance, flame retardant, antimicrobial and antistatic properties, moisture control, ultraviolet protection, and release features. The nanomaterials inside the fabric could influence numerous qualities, comprising reduction, electrical conductivity, flammability, and strength. Nanotechnology has additionally created a significant impression on various application and implementation. Nano-doctored fabrics may advance numerous fabrications as the nano-science progresses further.

Nanotechnology Fabrics water-repellent anti-microbial anti-static
1. The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. European Commission. https://ec.europa.eu/health/ph_risk/documents/synth_report.pdf Accessed on 14 Nov 2018. 2. Joseph T, Morrison M (2006) Nanotechnology in Agriculture and Food. A Nanoforum report, European Nanotechnology Gateway. https://www.nanowerk.com/nanotechnology/reports/reportpdf/report61.pdf Accessed on 14 Nov 2018. 3. Sandler R (2009) Nanotechnology: The Social and Ethical Issues. Project on Emerging Nanotechnologies. Woodrow Wilson International Center for Scholars. Washington, DC 4. Sharma P, Udeniyan A, Mishra PK, Kantharia M, Sharma US (2015) International Journal of Scientific Research. 4(10): 216-218. 5. Anderson K (2009) Nanotechnology in the Textile Industry Techexchange Library 1-4. 6. US EPA (2007) Introduction to nanotechnology. pp 1–29. https://www.epa.gov/rpdweb00/docs/cleanup/nanotechnology/chapter-1-introduction.pdf. Accessed 14 Nov 2018. 7. De Schrijver I, Eufinger K, Heyse P, Vanneste M, Ruys L, et al. (2009) Textiles of the future? Incorporation of nanotechnology in Textile applications. UNITEX nr. 2. 8. Nanomaterials (2018) National Institute of Environmental Health Sciences. https://www.niehs.nih.gov/health/topics/agents/sya-nano/ Accessed 14 Nov 2018. 9. Mariana R (2015) Nano Technology in Textile Industry (Review), Annals of the University of Oradea. Fascicle of Textiles, Leatherwork 16(2): 83-88. 10. ObservatoryNANO (2018) European observatory on nanotechnologies. https://www.observatorynano.eu/ Accessed 14 Nov 2018. 11. Nguyen KT (2011) J Nanomedic Nanotechnol. 2:5 103e. 12. Chen MS, Liu CY, Wang WT, Hsu CT, Cheng CM (2011) J Nanomedic Nanotechnol. 2: 117. 13. Nanjwade BK, Derkar GK, Bechra HM, Nanjwade VK, Manvi FV (2011) J Nanomedic Nanotechnol. 2: 107. 14. Nanotextiles (2018) www.fibre2fashion.com/industry-article/8/713/nano-textiles1.asp Accessed 14 Nov 2018. 15. Shih MF, Wu CH, Cherng JY (2011) J Nanomedic Nanotechnol. S3: 001. 16. Smartgarments (2011) https://www.smartgarmentpeople.com/index.php?q=Nanotextiles Accessed 14 Nov 2018. 17. Vigneshwaran N (2006) Nanotechnology finishing in textiles. www.nanowerk.com Accessed 14 Nov 2018 18. Rosen JE, Yoffe S, Meerasa A, Verma M, Gu FX (2011) J Nanomedic Nanotechnol. 2: 115. 19. Hinestroza JP (2007) Materials Today 10: 56. 20. Zeng D, Shan W, Xiao Q (2011) J Glycom Lipidom 1: 102. 21. Saboktakin MR, Tabatabaie RM, Maharramov A, Ramazanov MA (2011) J Nanomedic Nanotechnol. S4: 001. 22. Brown L, Webster GK, Kott L, Rao NKR, Luu TA, et al. (2011) Pharm Anal Acta 2: 134. 23. Liu D, Dong W (2009) Modern Applied Science 3: 154-157. 24. Singh KV, Sawhney PS, Sachinvala ND, Li G, Su-Seng P (2006) Beltwide Cotton Conferences 2497-2503. 25. Wong YWH, Yuen CWM, Leung MYS, Ku SKA, Lam HLI (2006) Autex Research Journal 6: 1-8. 26. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS (2004) J Appl Polym Sci. 96: 1-13. 27. Sun CZ, Lu CT, Zhao YZ, Guo P, Tian JL, et al. (2011) J Nanomedic Nanotechnol. 2: 114. 28. Achyuthan K (2011) J Biosens Bioelectron 2: 102e. 29. Thomas S, Waterman P, Chen S, Marinelli B, Seaman M, et al. (2011) J Nanomedic Nanotechnol. 2: 112. 30. Qian L, Hinestroza JP (2004) JTATM 4: 1-7. 31. Salim N, Basri M, Abd. Rahman MB, Abdullah DK, Basri H, et al. (2011) J Nanomedic Nanotechnol. 2: 11. 32. Jeevani T (2011) J Nanomedic Nanotechnol. 2(7): 1-5. 33. Amin GA (2010) J Pet Environ Biotechnol. 1: 104. 34. Rodrigues DF (2011) J Bioremed Biodegrad. 2:e101. 35. Lee HJ, Yeo SY, Jeong SH (2003) J Mater Sci. 38: 2199-2204. 36. Zheng J, Clogston JD, Patri AK, Dobrovolskaia MA, McNeil SE (2011) J Nanomedic Nanotechnol. S5: 001. 37. Pandurangappa C, Lakshminarasappa BN (2011) J Nanomedic Nanotechnol. 2:108. 38. Patil A, Chirmade UN, Trivedi V, Lamprou DA, Urquhart A, Douroumis D (2011) J Nanomedic Nanotechnol. 2(3):111. 39. Adjah AD (2011) Hydrol Current Res. 2: 116. 40. Go YM, Duong DM, Peng J, Jones DP (2011) J Proteomics Bioinform. 4: 196-209. 41. Jaiswal S (2011) J Bioremed Biodegrad. 2(4): 126. 42. Hashimoto K, Irie H, Fujishima A (2005) Jpn J Appl Phys. 44: 8269-8285. 43. Denery JR, Cooney M.J, Li QX (2011) J Bioengineer & Biomedical Sci. 1: 101. 44. Lukianova-Hleb EY, Oginsky AO, Shenefelt DL, Drezek RA, Hafner JH, et al. (2011) J Nanomedic Nanotechnol. 2: 104. 45. Sarker M, Chopra S, Mortelmans K, Kodukula K, Talcott C, et al. (2011) J Comput Sci Syst Biol. 4: 021-026. 46. Mizuno K, Zhiyentayev T, Huang L, Khalil S, Nasim F, et al. (2011) J Nanomedic Nanotechnol. 2: 109. 47. Zhang J, France P, Radomyselskiy A, Datta S, Zhao J, Ooij WV (2003) J Appl Polym Sci. 88: 1473-1481. 48. Khare PK, Banger G, Mishra P, Mishra J (2008) Indian Journal of Physics 82(10):1301-1308. 49. Li GL, Wang GH (1999) J Mater Res. 14: 3346-3354. 50. Nakamura J, Nakajima N, Matsumura K, Hyon SH (2011) J Nanomedic Nanotechnol. 2:106. 51. Beringer J (2005) Nanotechnology in textile finishing state of art and future aspects 52. Lu M, Whitelegge JP, Whelan SA, He J, Saxton RE (2010) J Proteomics Bioinform 3: 029-038. 53. Qian L, Sun G (2003) Journal of Applied Polymer Science 89: 2418-2425. 54. Simoncic B, Tomsic B (2010) Textile Research Journal 80(16):1721-1737. 55. Gao Y, Cranston R (2008) Text. Res. J. 78: 60–72. 56. Schindler WD, Hauser PJ (2004) In: Chemical Finishing of Textiles, Woodhead Publishing Ltd, Cambridge. 57. Dring I (2003) In: Heywood, D. (Ed.) Textile Finishing, Society of Dyers and Colourists, Bradford, p. 351–371. 58. Mahltig B, Haufe H, Böttcher H (2005) J. Mater. Chem. 15:4385–4398. 59. Vigo TL (1983) In: Sello SB (Ed.) Functional Finishes, Part A, Chemical Processing of Fibres and Fabrics, Handbook of Fiber Science and Technology. Marcel Dekker, Inc., New York: p. 367–426. 60. Yeo SY, Lee HJ, Jeong SH (2003) J Mater Sci. 38: 2143-2147. 61. Narasimhulu K, Rao PS, Vinod AV (2010) J Microbial Biochem Technol. 2: 074-076. 62. Liu ZS, Rempel GL (2011) Hydrol Current Res. 2: 107. 63. Shimizu K, Komuro Y, Tatematsu S, Blajan M (2011) Pharm Anal Acta S1: 001. 64. Anita S, Ramachandran T (2012) J Textile Sci Eng. 2(4):1-5. 65. Burniston N, Bygott C, Stratton J (2004) Surface Coatings International Part A: 179-814. 66. Sherman J (2003) Nanoparticulate titanium dioxide coatings, and processes for the production and use thereof. Pat. No 736-738. 67. Xiong MN, Gu GX, You B, Wu LM (2003) Journal of Applied Polymer Science 90: 923-1931. 68. Xin JH, Daoud WA, Kong YY (2004) Textile Research Journal 74:97-100. 69. Saito M (1993) Journal of Coated Fabrics 23: 150-164. 70. Daoud WA, Xin JH (2004) Journal of Sol-Gel Science and Technology 29:25-29. 71. Wang RH, Xin JH, Tao XM, Daoud WA (2004) Chemical Physics Letters 398(1-3):250-255. 72. Dong WG, Huang G (2002) Journal of Textile Research 23: 22-23. 73. Zhou ZW, Chu LS, Tang WM, Gu LX (2003) Journal of Electrostatics 57: 347-354. 74. Wu Y, Chi YB, Nie JX, Yu AP, Chen XH, Gu HC (2002) Journal of Functional Polymers 15: 43-47. 75. Xu P, Wang W, Chen SL (2005) Melliand International 11: 56-59. 76. Wang CC, Chen CC (2005) Journal of Applied Polymer Science 97: 2450-2456. 77. Song XQ, Liu A, Ji CT, Li HT (2001) Journal of Jilin Institute of Technology 22: 24-27. 78. Bangladesh, the land of textiles: review & outlook (2012) textiletoday.com.bd/bangladesh-the-land-of-textiles-review-outlook/ Accessed 14 Nov 2018. 79. Hurwitz M (2006) l Physics Letters 398: 250-255. 80. Glashauser A, Denk L, Minuth WW (2011) J Tissue Sci Eng. 2: 105. 81. Zhou R, Gao H (2014) WIREs Nanomed Nanobiotechnol. 6:452–474. 82. Motyl E (2003) Energy-saving materials and Technologies-Nanomaterials, New Smart Materials. Prace Naukowe Instytutu Podstaw Elektrotechniki I Elektrotechnologii. Politechniki Wroclawskiej nr 39, seria: Konferencje nr 14, 2003. Pp. 42-48. 83. Mahesh G, Sornapudi SD (2017) International Journal of Computer Science 5(2): 2133-2141. 84. Oakes J, Batchelor SN, Dixon S (2005) Coloration Technology 12: 237-244. 85. Jamadar S (2013) Applications of Smart and Interactive Textiles. Smart and interactive textiles. https://textilelearner.blogspot.com/2013/04/applications-of-smart-andinteractive.html Accessed 14 Nov 2018. 86. New technologies for innovative sportswear (2013) Stitch & Print International. https://www.stitchprint.eu/news/new-technologies-for-innovative-sportswear/ Accessed 14 Nov 2018. 87. Transparency market research (2015) https://www.transparencymarketresearch.com/pressrelease/smart-fabrics-and interactive-textiles-market.htm Accessed 14 Nov 2018. 88. Ghosh SK (2006) Functional Coatings by Polymer Microencapsulation. 1st ed. Federal Republic of Germany: WILEY-VCH Verlag GmbH & Co. KG 89. White SR, Sottos NR, Moore J, Geubelle P, Kessler M, Brown E, Suresh S, Viswanathan S (2001) Nature 409:794-797. 90. Rama D, Shami TC, Bhasker Rao KU (2009) Defence Science Journal 59(1): 82-95. 91. Çiçek M (2015) International Journal of Electrical, Electronics and Data Communication 3(4): 45-50. 92. Hohenstein Institute (2014) www.hohenstein.de Accessed 14 Nov 2018. 93. Harrop P (2015) Wearable Technology: a materials goldmine https://www.idtechex.com/research/articles/wearable-technology-a-materials-goldmine-00007241.asp?donotredirect=true Accessed 14 Nov 2018. 94. Kathiervelu SS (2003) Synthetic Fibres 32: 20-22. 95. Silas J, Hansen J, Lent T (2007) The Future of Fabric. Health Care. In conjunction with health care without harm’s research collaborative. https://www.noharm.org/us Accessed 14 Nov 2018. 96. Siegfried B. (2007) NanoTextiles: Functions, nanoparticles and commercial applications. EMPA material Science and Technology. https://www.empa.ch/documents/56122/328606/NanoSafeTextiles_1.pdf/b2add656-265b-42df-9196-f2768d773748 Accessed 14 Nov 2018.
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2019.3.3 Analytical chemistry Separation of Some Metal Ions Using β-Naphthol Modified Polyurethane Foam Separation of Some Metal Ions Using β-Naphthol Modified Polyurethane Foam El-sharief Fadwa M. Chemistry Department, Faculty of Science, University of Benghazi, Benghazi, Libya. A. Asweisi Abdelsalam Chemistry Department, Faculty of Science, University of Benghazi, Benghazi, Libya. Bader Nabil Chemistry department, Faculty of science, University of Benghazi, Benghazi, Libya 01 04 2019 2 2 149 158 03 11 2018 29 12 2018 Copyright © 2019, Sami Publishing Company (SPC). 2019 https://www.ajnanomat.com/article_81049.html

Polyurethane foam was chemically functionalized with β-naphthol to adsorb metal ions (Fe3+, Cu2+, Cr3+, Co2+ and Mn2+), applying the off-line solid phase extraction procedure. The concentrations of the metals have been detemined using the flame atomic absorption spectroscopy (FAAS). Various factors including, the pH of the sample solution and the time of extraction were examined. The interference effects of the additional ions in the solution were studied, metal ions of Na+, K+, Mg2+ and Ca2+ and anions, CO32- and SO42-. The new sorbent was examined for separation of Cu, Mn, Cr, Co and Fe ions. The adsorption of metal ions onto β-Nap-PUF was tested using the Morris-Weber equation. The straight line of the plot qt (adsorbed amounts at time t) vs t in all cases, with low R2 (0.767) in case of Mn, indicates the intra particle transport phenomena. The Lagergren equation was applied for mass action phenomenon. The plots of log(1-F) Vs t for Mn, Cr, and Cu were straight with high R2 0.99, 0.98, and 0.81 respectively, indicates that mass action phenomenon are controlling the mechanism following first order process. The capacity sequence of the sorbent was in the order Mn2+ > Co2+ > Cr3+ > Fe3+> Cu2+.

Preconcentration Solid-liquid extraction β-Naphthol Modified Polyurethane Foam
1. Oliveira, R. V.and Lemos, V. A., (2012), Synthesis of a New Sorbent Based on Grafted PUF for the Application in the Solid Phase Extraction of Cadmium and Lead., Polyurethane, Chap. 12, 263-280. 2. Lemos, V.A., Santos, M.S., Santos, E.S., Santos, M.J.S., Dos Santos, W.N.L., Souza, A.S., De Jesu,s D.S., Dos Virgen,s C. F., Carvalho, M.S., Oleszczuk, N., Vale, M.G.R., Welz, B., and Ferreira, S.L.C., (2007), Spectrochimi. Acta,. 62:4-12. 3. Lemos, V. A., Santos, L.N., Bezerra, M. A., (2010), J. Food. Compos. Anal.23: 277-281. 4. Ligang Chen, H., Zeng, Q., Xu,Y., Sun, L., Xu, H., and Ding, L., (2009), J Chromatogr Sci, 47:614-623. 5. Bader, N.R., (2009), Schiff’s bases complexation and solid phase extraction for improved trace element analysis, Ph. D. Thesis in Fachbereich Chemie., Universität Duisburg-Essen. 6. Pichon, V., (2000), Journal of Chromatography A, 885:195–215. 7. Simpson, N.J.K., (2000), Solid phase extraction, principles, techniques and applications. Marcel Dekker, Inc. 8. Aristidis N. Anthemidis, G.A.Z., John A. Stratis, (2002), Talanta, 58:831-840 9. Abdel Azeem, S.M., Arafa, W. A. A.., El-Shahat, M.F., (2010), J. Hazard. Mater. 182:186-294. 10. Abdel Azeem, S.M., Mohamed Attaf, S.M., El-Shahat, M.F., (2013), React Funct Polym, 73:182–191 11. Abdel Salam, S.M., (2008), Chemically Modified Polyurethane Foam for Pre-concentration and Separation of Inorganic and Organic Species. Ph. D. Thesis in Fachbereich Chemie. Universität Duisburg-Essen. 12. Moawed, E. A., Zaid, M.A., and El-Shaha,t M. F., (2005), Acta Chromatogr. 15:226-237. 13. Saima Q. Memona, N.M., Amber R. Solangi, Jamil-ur-Rehman Memon, Sawdust, (2008), Chem Eng J. 140:236-240. 14. Farag, A.B., Soliman, M.H., Abdel-Rasoul, O.S., El-Shahawi, M.S., (2007), Anal Chem Acta,. 601: 218-229. 15. Moawed, E.A., (2004), Acta Chromatographica,. 14:198-214. 16. Mohammad, S., Tawfiq Makki, R., Mohammady Abdel-Rahman, K., Alfooty, O., and El-Shahawi, M.S., (2011), E-J Chem. 8(2): 887-895. 17. Bshmmakh, A. S., Bahaffi, S.O., Al-Shareef, F. M., and El-Shahawi, M. S., (2009), Anal Sci. 25: 413-418.
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2019.3.4 Physical chemistry TD-DFT Calculations, Electronic Structure, NBO , NLO Analysis, Biological Activity, and Electronic Absorption Spectra of Some Novel Schiff base Derivatives TD-DFT Calculations, Electronic Structure, NBO , NLO Analysis, Biological Activity, and Electronic Absorption Spectra of Some Novel Schiff base Derivatives Abdel Halim Shimaa Department of Chemistry, Faculty of Education,, Ain Shams University, Roxy 11711, Cairo, Egypt Gomaa Essamhassan G Arafa Department of Chemistry, Faculty of Science, Mansoura University, Mansoura ,Egypt E. Rashedb Shymaa Department of Chemistry, Faculty of Science, Mansoura University, Mansoura ,Egypt 01 04 2019 2 2 159 185 12 10 2018 16 11 2018 Copyright © 2019, Sami Publishing Company (SPC). 2019 https://www.ajnanomat.com/article_77383.html

The electronic structure and spectra of schiff base derivatives compounds are investigated using TD-DFT/B3LYB/6-311G (d, p) level of theory. The results of calculations show that all the studied compounds 1–4 are non-planar, as indicated from the dihedral angles. The electronic absorption spectra of the studied compounds are recorded in the UV-VIS region, in both ethanol (as polar solvent) and dioxane (as non-polar solvent) . Solvent dependence of the band maxima (λmax) and intensities of the observed spectra are explained in terms of blue and red shifts. Electronic configurations contributing to each excited state are identified and the relevant MOs are characterized. The theoretical spectra computed at CAM-B3LYP/6-311G (d, p) in gas phase, ethanol and dioxane nicely reproduce the observed spectra. The natural bond orbital (NBO) analysis were discussed in terms of the extent of delocalization, intermolecular charge transfer and second order perturbation interactions between donor and acceptor MOs. The calculated EHOMO and ELUMO energies of the studied compounds can be used to explain the extent of charge transfer in the molecule and to calculate the global properties; the chemical hardness (η), global softness (S), electrophilicity (ω), and electronegativity (χ). The calculated nonlinear optical parameters (NLO); polarizibilty (α), anisotropy of the polarizibility (Δα) and first order hyperpolarizibility (β) of the studied compounds have been calculated at the same level of theory and compared with the proto type Para-Nitro-Aniline (PNA), show promising optical properties. 3D-plots of the molecular electrostatic potential (MEP) for some of the studied compounds are investigated and analyzed showing the distribution of electronic density of orbital's describing the electrophilic and nucleophilic sites of the selected molecules. The biological activity of the studied compounds was tested against gram positive, gram negative and Fungi. A correlation between energetic, global properties and biological activity were investigated and discussed.

UV spectra TD-DFT NBO and NLO analysis Biological activity Schiff base derivatives
1. Cimerman, Z., Miljanić, S., & Galić, N. (2000). Croat Chem Acta. 73:81-95. 2. Ghorbani-Choghamarani, A., Tahmasbi, B., Arghand, F., & Faryadi, S. (2015). RSC Adv, 112: 92174-92183. 3. Nikoorazm, M., Ghorbani‐Choghamarani, A., & Noori, N. (2015). Appl Organomet Chem. 5: 328-333. 4. Kabak, M., Elmali, A., & Elerman, Y. (1999). J Mol Struct, 477(1), 151-158. 5. Patel, P. R., Thaker, B. T., & Zele, S. (1999). Preparation and characterisation of some lanthanide complexes involving a heterocyclic β–diketone. 6. Nikoorazm, M., Ghorbani-Choghamarani, A., Panahi, A., Tahmasbi, B., & Noori, N. (2018). J Iran Chem Soc .1:181-189. 7. Nikoorazm, M., Ghorbani, F., Ghorbani-Choghamarani, A., & Erfani, Z. (2018). Phosphorus Sulfur, 1-10. 8. M. Nikoorazm, Ghorbani-Choghamarani, A., & Khanmoradi, M. (2016). RSC Adv, 61: 56549. 9. Raman, N., Raja, Y. P., & Kulandaisamy, A. (2001). J . Chemical Sciences, 113(3), 183-189. 10. Khanmoradi, M., Nikoorazm, M., & Ghorbani‐Choghamarani, A. (2017). Appl Organomet Chem, 9 : e3693. 11. Ghorbani‐Choghamarani, A., Darvishnejad, Z., & Norouzi, M. (2015) .Appl Organomet Chem, 10: 707-711. 12. ASHRAF¹, M. A., Wajid, A., Mahmood, K., MAAH¹, M. J., & Yusoff, I. (2011. Oriental Journal of Chemistry, 2: 363-372. 13. Ghorbani‐Choghamarani, A., Darvishnejad, Z., & Norouzi, M. (2015). Appl Organomet Chem, 3: 170-175. 14. Ghorbani-Choghamarani, A., Darvishnejad, Z., & Tahmasbi, B. (2015). Inorg Chimi Acta, 435 : 223-231. 15. Campos, A., Anacona, J. R., & Campos-Vallette, Μ. M. (1999). Main Group Metal Chemistry, 22: 283-288. 16. Sari, N., Arslan, S., Logoglu, E., & Sakiyan, I. (2003). GUJ Sci, 1:283-288. 17. ASHRAF¹, M. A., Wajid, A., Mahmood, K., MAAH¹, M. J., & Yusoff, I. (2011).Oriental Journal of Chemistry, 27: 363-372. 18. Cozzi, P. G. (2004). Chem. Soc. Rev, 33: 410-421. 19. CHANDRA, S. (2004). Journal of the Indian Chemical Society, 81: 203-206. 20. Pandeya, S. N., Yogeeswari, P., Sriram, D., De Clercq, E., Pannecouque, C., & Witvrouw, M. (1999). Chemotherapy, 45:192-196. 21. Nikoorazm, M., Ghorbani-Choghamarani, A., & Noori, N. (2015). Journal of Porous Materials, 22: 877-885. 22. Becke, A. D. (1993). The Journal of chemical physics, 98: 5648-5652. 23. Lee, C., Yang, W., & Parr, R. G. (1988). Physical review B, 37: 785. 24. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., ... & Millam, J. M. Komaromi, RL Martin, DJ Fox, T. Keith, MA Al-Laham, CY Peng, A. Nanayakkara, M. Challacombe, PMW Gill, B. Johnson, W. Chen, MW Wong, C. Gonzalez, JA Pople, Gaussian, 3. 25. Frisch, M. J. E. A., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., ... & Nakatsuji, H. (2009). Gaussian 09, revision a. 02, gaussian. Inc., Wallingford, CT, 200. 26. https://www.chemcraftprog.com. 27. Avcı, D. (2011). Molecular and Biomolecular Spectroscopy, 82: 37-43. 28. Avcı, D. (2011). Molecular and Biomolecular Spectroscopy, 82: 37-43. 29. Avcı, D., Başoğlu, A., & Atalay, Y. (2010). Structural Chemistry, 21: 213-219. 30. Avci, D., Hüseyin, C. Ã., & Atalay, Y. (2008). Ab initio Hartree-Fock calculations on linear and second-order nonlinear optical properties of new acridine-benzothiazolylamine chromophores. Journal of molecular modeling, 14(2). 31. Pearson, R. G. (1986). Proceedings of the National Academy of Sciences, 83: 8440-8441. 32. Günay, N., Pir, H., Avcı, D., & Atalay, Y. (2012). NLO and NBO analysis of sarcosine-maleic acid by using HF and B3LYP calculations. Journal of Chemistry, 2013. 33. J.G. Matecki, (2010) Trans. Met. Chem. 35: 801. 34. Yanai, T., Tew, D. P., & Handy, N. C. (2004). Chemical Physics Letters, 393: 51-57. 35. Chocholoušová, J., Špirko, V., & Hobza, P. (2004). Physical Chemistry Chemical Physics, 6: 37-41. 36. Szafran, M., Komasa, A., & Bartoszak-Adamska, E. (2007). Journal of molecular structure, 827: 101-107. 37. Macoonald, J. N., Mackay, S. A., Tyler, J. K., Cox, A. P., & Ewart, I. C. (1981). J. Chem. Soc. Farady Trans. II, 77: 79-89. 38. D.Y. Sajan, R. Erdogdu, O. Reshmy, K. Dereli, K. Thomas, I. Hubert Joe Spectrochimica Acta Part A 82 (2011) 118-128. 39. Reed, A. E., Weinstock, R. B., & Weinhold, F. (1985). Natural population analysis. The Journal of Chemical Physics, 83: 735-746. 40. Bradshaw, D. S., & Andrews, D. L. (2009). Quantum channels in nonlinear optical processes. Journal of Nonlinear Optical Physics & Materials, 18: 285-299. 41. Cheng, L. T., Tam, W., Stevenson, S. H., Meredith, G. R., Rikken, G., & Marder, S. R. (1991). The Journal of Physical Chemistry, 95: 10631-10643. 42. Kaatz, P., Donley, E. A., & Shelton, D. P. (1998). A comparison of molecular hyperpolarizabilities from gas and liquid phase measurements. The Journal of chemical physics, 108(3), 849-856. 43. Rajesh, P., Gunasekaran, S., Gnanasambandan, T., & Seshadri, S. (2015). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137: 1184-1193. 44. Scrocco, E., & Tomasi, J. (1978). (Vol. 11, pp. 115-193). Academic Press. 45. Politzer, P., & Murray, J. S. (2002). Theoretical Chemistry Accounts, 108: 134-142. 46. Sajan, D., Joseph, L., Vijayan, N., & Karabacak, M. (2011) Molecular and Biomolecular Spectroscopy, 81: 85-98.
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2019.3.5 Inorganic chemistry Synthesis, Characterization and Optical Properties of Co3O4 Nanoparticles Synthesis, Characterization and Optical Properties of Co3O4 Nanoparticles Dehno Khalaji Aliakbar Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran. 01 04 2019 2 2 186 190 11 09 2018 06 12 2018 Copyright © 2019, Sami Publishing Company (SPC). 2019 https://www.ajnanomat.com/article_80123.html

Mononuclear acyclic cobalt(II) complex [CoL](NO3)2, with the L = 3,3ʹ-dimethoxy-2,2ʹ-(propane-1,3-diyldioxy)dibenzaldehyde was synthesized and used as a precursor for preparation of the Co3O4 nanoparticles. The method was based on thermal decomposition of the cobalt(II) complex at 450 ºC for 3 h in air atmosphere. The cobalt oxide nanoparticles were characterized using FT-IR, UV-Vis, XRD, SEM, and TEM techniques. The FT-IR and XRD results revealed that the Co3O4 nanopartcles were pure cubic and single phase. TEM image proved the formation of weakly agglomerated Co3O4 consisted of uniformaly shaped nanoparticles. The average particle size of the obtained Co3O4, derived from transmission electron microscopy data was approximately 17 nm, which is in agreement with that calculated by XRD. In addition, the optical spectrum indicated one direct band gap at 2.3 eV.

Cobalt(II) complex Co3O4 nanoparticles Thermal decomposition Optical properties
1. Zhao C, Huang B, Zhou J, Xie E (2014) Phys. Chem. Phys., 16:19327-19332. 2. Jin L, Li X, Ming H, Wang H, Jia Z, Fu Y, Adkins J, Zhou Q, Zheng J (2014) RSC Adv, 4:6083-6089. 3. Wen W, Wu JM, Cao MH (2014) Nanoscale, 6:12476-12481. 4. Su P, Liao S, Rong F, Wang F, Chen J, Li C, Yang Q (2014) J. Mater. Chem. A, 2:17408-17414. 5. Teng Y, Song LX, Wang LB, Xia J (2014) J. Phys. Chem. C., 118:4767-4773. 6. Wang J, Qiao Z, Zhang L, Shen J, Li R, Yang G, Nie F (2014) Cryst. Eng. Commun., 16:8673-8677. 7. Roy M, Ghosh S, Naskar MK (2014) Dalton. Trans., 43:10248-10257. 8. Meher SK, Rao GR (2011) J. Phys. Chem. C., 115:25543-25556. 9. Dou Z, Cao C, Chen Y, Song W (2014) Chem. Commun., 50:14889-14891. 10. Sahoo P, Djieutedjeu H, Poudeu PFP(2013) J. Mater. Chem. A., 1:15022-15030. 11. Farhadi S, Pourzare K, Bazgir S (2014) J. All. Compd., 587:632-637. 12. Ghiasi M, Malekzadeh A, Mardani H (2016) Mater. Sci. Sem. Proces., 42:311-318. 13. Khansari A, Salavati-Niasari M, Kazemio Babaheydari A (2012) J. Clust. Sci. 23:557-565. 14. Salavati-Niasari M, Davar F, Mazaheri M, Shaterian M (2008) J. Mag. Mag. Mater. 320:575-578. 15. Hosny NM (2014) Mater. Chem. Phys., 144:247-251. 16. Pal J, Chauhan P (2010) Mater. Charact., 61:575-579. 17. Fan S, Liu X, Li Y, Yan E, Wang C, Liu J, Zhang Y (2013) Mater. Lett., 91:291-293. 18. Wang R.-T, Kong L.-B, Lang J.-W, Wang X.-W, Fan S.-Q, Luo Y.-C, Kang L (2012) J. Power. Sourc. 217:358-363. 19. Hosseinian A, Jabbari S, Rahimipour HR, Mahjoub AR (2012) J. Mol. Struct., 1028:2215-221. 20. Farhadi S, Pourzare K (2012) Mater. Res. Bull., 47:1550-1556. 21. Wang L, Deng J, Lou Z, Zhang T (2014) Sensors. Actuators. B., 201:1-6. 22. Jin Y, Wang L, Shang Y, Gao J, Li J, He X (2015) Electrochim. Acta., 151:109-117. 23. Huang Y, Chen C, An C, Xu C, Xu Y, Wang Y, Jiao L, Yuan H (2014) Electrochim. Acta., 145:34-39. 24. Teng Y, Yamamoto S, Kusano Y, Azuma M, Shimakawa Y (2010) Mater. Lett., 64:239-242. 25. Hashemi Amiri SE, Vaezi MR, Kandjani AE (2011) J. Cer. Process. Res., 12:327-331. 26. Ren M, Yuan S, Su L, Zhou Z (2012) Solid. State. Sci., 14:451-455. 27. Liu Y, Zhang X, Wu Y (2011) Mater. Chem. Phys., 128:475-482. 28. Makhlouf SA, Bakr ZH, Aly KI, Moustafa MS (2013) Superlat. Microstruct., 64:107-117. 29. Khalaji AD, Nikookar M, Fejfarova K, Dusek M (2014) J. Mol. Struct., 1071:6-10. 30. Khalaji AD (2015) J. Appl. Chem. Res., 9:41-45. 31. Khalaji AD, Rahdari R, Gharib F, Sanmartín Matalobos J, Das D (2015) J. Cer. Proc. Res., 16:486-489. 32. Shen SF, Xu ML, Lin DB, Pan HB (2017) App. Surf. Sci., 396:327-332. 33. Farhadi S, Safabakhsh J (2012) J. All. Compd., 515:180-185. 34. Salavati-Niasari M, Mir N, Davar F (2009) J. Phys. Chem. Sol., 70:847-852. 35. Sharma JK, Srivastava P, Singh G, Shaheer Akhtar M, Ameen S (2015) Mater. Sci. Eng. B., 193:181-188.
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2019.3.6 Analytical chemistry Effect of stirring to produce ferric saccharide capsules with alginate coating Effect of stirring to produce ferric saccharide capsules with alginate coating Khosroyar Susan Chemical engineering department, Quchan branch, Islamic Azad University, Quchan, Iran arastehnodeh ali Chemical engineering department, Quchan branch, Islamic Azad University, Quchan, Iran 01 04 2019 2 2 191 200 19 11 2018 06 12 2018 Copyright © 2019, Sami Publishing Company (SPC). 2019 https://www.ajnanomat.com/article_80124.html

The present study has focused on the effect of stirring to produce ferric saccharide capsules with alginate coating applying the coacervation method so that we can obtain the best capsules for fortification of hydrated and dehydrated food products. At first, three methods including stirrer, ultra-sonic and sonic bath were compared in order to select the best way of stirring. The experiments results showed that turning was provided by the stirrer method resulted in capsulation with spherical morphology and uniform distribution of surface. In this case the other factors such as the alginate concentration and calcium salt concentration were investigated. After studying the various conditions, it is suggested that the best Capsules were formed in alginate 3% at 500 rpm with concentration of calcium chloride salt 1M. The resulted capsules by this method had a high efficiency and were more stable in hydrated and dehydrated food ingredients network for a long time.

microcapsules Coacervation ferric saccharide alginate ultra-sonic
1. Gharibzahedi, S. M. T., & Jafari, S. M. (2017). Trends in Food Science & Technology, 62: 119-132. 2. Z. Chen, Afr. j. food Agriculture Nutrition and development, 2, 215 (2002). 3. https://www.highbeam.com/doc/1G1-12084031.htm 4. Gouin, S. (2004). Trends in food science & technology, 15: 330-347. 5. Bryszewska, M. A., Laghi, L., Zannoni, A., Gianotti, A., Barone, F., Taneyo Saa, D. L., ... & Forni, M. (2017). Nutrients, 9: 272. 6. Khosroyar, S., & Arastehnodeh, A. (2018). Journal Of Nanoanalysis, 5: 58-65. 7. D. Dean, J. Robert. Food processing. High beamresarch. https://www.highbeam.com/doc/ 1G1-12084031.htm, 1992. 8. Kumar, S. (2006). Functional coatings and microencapsulation: A general perspective. in-chief: Ghosh, S.(Ed). Functional coatings, 1er ed. Wiley-VCH, Germany, 1-28. 9. Khosroyar, S., & Arastehnodeh, A. (2018). Journal Of Nanoanalysis, 5: 58-65. 10. R. F. Hurrell, S. Lynch, T. Bothwell, H. Cori, R. Glahn, E. Hetrampf, Z. Kratky, D. Miller, M. Rodenstein, H. Streekstra, B.Teacher, E.Y. Turner, C.K.Eung, M. Zimmermann, (2004). Int. J .Vitam.Nutr. Res., 74: 387. 11. S.J. Fairweather-Tait, E,M, Widdowson, J,C, Mathers, (1992). In contribution of nutrition to human and animal health. Cambridge: Cambridge University Press., 151. 12. B. Borch-Iohnsen, (1994). Nutr. Res., 14, 1643. 13. Olivares, M., Pizarro, F., Pineda, O., Name, J. J., Hertrampf, E., & Walter, T. (1997). The Journal of nutrition, 127:1407-1411. 14. Khosroyar, S., & Arastehnodeh, A. (2018). JOURNAL OF NANOANALYSIS, 5 : 58-65. 15. Annan, N. T., Borza, A. D., & Hansen, L. T. (2008). Food Research International, 41:184-193. 16. Li, X., Kong, X., Shi, S., Zheng, X., Guo, G., Wei, Y., & Qian, Z. (2008). BMC biotechnology, 8: 89. 17. K.Y.Lee, W. H. Fark ,W.S Ha. J. Applied polymer. Sci., 63, 425, (1997). 18. P. Devos, B. Dehaan, R. Van Schilfgaarde biomaterials., 18, 273, (1997). 19. E, Martins, D, Poncelet, D, R, Reactive and functional polymers Journal.,114, 49, (2017). 20. B. Mohanty, B. H. Bohidar., (2003). J. Biomacromolecules., 4,1080, 21. J. Ronald, (1988). Flavor Encapsulation, Dodge Company, 14, 126, 22. J. Dong, A.Toure, C. S. Jia, X. M. Zhang, S. Y. Xu., (2007). J. Microencapsul., 24, 634, 23. H. Alavitalab, M. Ardjmand, A. Motallebi, R. Pourgholam. (2010). Iranian Journal of Fisheries Sciences, 9, 199, 24. Y. P. Lemos, P. H. M. Marfil, V. R. Nicoletti, (2017). International Journal of food properties, 20, 132, 25. A. Kanellopoulos, P. Giannaros, D. Palmer, A. Kerr, A. Al-Tabbaa, (2017). Smart Materials and structures Journal, 26, 45, 26. A. Bartkowiak, (2000). Chem .mater, 12, 206, 27. H. S. Kwak, Y. S. Ju, H., J. Ahn, S. Leel. (2003). Asian-australasian. J.Sci.,16, 1205, 28. B. Gibbs, S. Kemash, A. Inteaz, Catherine, N. (1999). Int. J .Food Sci. Nutr., 50 (3), 213, 29. R. Wegmuller, M. B. Zimmermann, D. Moretti, M. Arnold,W. Langhans , R. F. Hurrell, AM. (2004). J. Sci. Nutr., 134, 3301, 30. R. R. Mokaram, S. A. Mortazavi, M. B. Habibi najafi, F. Shahidi. (2008)., Elsevier, 42(8), 1040, 31. P. M. M. Schooyen, V.D. Meer, D. Kruif., (2001). Proceedings of the Nutrition Society, 60, 475. 32. R. Bagheri, R. Izadi, N. Tabari., S. R. Shahosseini, (2016). Food science and Nutrition, 4(2), 216, 33. H. A. Mazandrani, S. R. Javadian, S. Bahram, (2016). Food science and Nutrition, 4(2), 298, 34. Ghorbani-Choghamarani, A., Mohammadi, M., & Taherinia, Z. Journal of the Iran Chem Soci, 1-11. https://doi.org/10.1007/s13738-018-1522-9 35. Amir Mehralizadeh, Parvin Gharbani*. Asian J. Nanosci. Mater., 2018, 2(1) , 27-35. 36. Jyoti Sharma*, Ravi Bansal, Pradeep K. Soni, Swati Singh and Anand. K. Halve.(2018), Asian J. Nanosci. Mater. 1, 133-140.
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2019.3.7 Inorganic chemistry Nano-Sized and Single Crystal of a 1D Copper(I) Coordination Polymer: Preparation, Characterization, Thermal and Structural Studies Nano-Sized and Single Crystal of a 1D Copper(I) Coordination Polymer: Preparation, Characterization, Thermal and Structural Studies Dehno Khalaji Aliakbar Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran. Peyghoun Seyyed Javad Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran Dusek Michal Institute of Physic of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic Eigner Vaclav Institute of Physic of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic 01 04 2019 2 2 201 211 03 10 2018 30 12 2018 Copyright © 2019, Sami Publishing Company (SPC). 2019 https://www.ajnanomat.com/article_81098.html

Nano-sized powder of a new 1D copper(I) coordination polymer, [Cu(nba2en)(NCS)]n (1), (nba2en = N,Nʹ-bis(4-ntrobenzylidene)ethane-1,2-diamine, was synthesized using ultrasonic bath assisted and characterized by scanning electron microscopy (SEM), IR and 1H-NMR spectroscopy, and elemental analyses. Thermal stability of 1 was studied using thermogravimetric (TG) and differential thermal analyses (DTA). The crystal structure was investigated by single-crystal X-ray diffraction. The structure of 1 consists of a 1D polymeric chain in which copper(I) ions are bridged by two thiocyanate group bonding in an end-to-end fashion, with CuCu separation 5.556(4) Å.

Nano-sized Single-crystal X-ray diffraction 1D Polymeric chain crystal structure
[1] Zhang D, Wang P (2012) Inorg Chem Commun 26:77-81. [2] Mondal S, Mandal S, Jana A, Mohanta S (2014) Inorg Chim Acta 415:138-145. [3] Li Y, Zhang ZX, Li T, Li KC (2010) Russ J Coord Chem 36:48-52. [4] Kim TH, Shin YW, Kim JS, Lee SS, Kim J (2007) Inorg Chem Commun 10:717-719. [5] Bigdeli F, Ghasempour H, Azhdari Tehrani A, Morsali A, Hosseini-Monfared H (2017) Ultrasonic Sonochem 37:29-36. [6] Masoomi MY, Morsali A, Junk PC, Wang J (2017) Ultrasonic Sonochem 34:984-992. [7] Khalaji AD, Rohlicek J, Machek P, Das D (2014) J Clust Sci 25:1425-1434. [8] Khalaji AD, Jafari K, Bahramian B, Fejfarova K, Dusek M (2013) Monatsh Chem 144:1621-1626. [9] Khalaji AD, Triki S, Das D (2011) J Therm Anal Calorim 103:779-783. [10] Amirnasr M, Rasouli M, Mereiter K (2013) Inorg Chim Acta 404:230-235. [11] Morshedi M, Amirnasr M, Triki S, Khalaji AD (2009) Inorg Chim Acta 362:1637-1640. [12] Beheshti A, Clegg W, Nobakht V, Harrington RW (2014) Polyhedron 81:256-260. [13] Khalaji AD, Weil M, Hadadzadeh H, Daryanavard M (2009) Inorg Chim Acta 362:4837-4842. [14] Khalaji AD, Stoeckli-Evans H, Das D (2012) Monatsh Chem 143:595-600. [15] Palatinus L, Chapuis G (2007) J Appl Crystallogr 40:786-791. [16] Petricek V, Dusek M, Palatinus L (2014) Z Kristallogr 229:345-350. [17] Diamond-Crystal and Molecular Structure Visualization. Crystal Impact - K.
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2019.3.8 Application of nanomaterial RECENT RESEARCH INNOVATIONS IN DRUG DELIVERY ‘THROUGH AND TO’ OCULAR ROUTE RECENT RESEARCH INNOVATIONS IN DRUG DELIVERY ‘THROUGH AND TO’ OCULAR ROUTE TYAGI YOGITA FACULTY OF PHARMACY,DIT UNIVERSITY, DEHRADUN, UTTARAKHAND,INDIA MADHAV N V SATHEESH FACULTY OF PHARMACY, DIT UNIVERSITY, DEHRADUN, UTTARAKHAND, INDIA 01 04 2019 2 2 212 227 03 07 2018 13 11 2018 Copyright © 2019, Sami Publishing Company (SPC). 2019 https://www.ajnanomat.com/article_81174.html

Delivery of API molecules to the brain is a challenging task. The main aim of this review is to present ocular route as a powerful region and focus on the various Nano-formulations. Various efforts in ocular drug delivery have been made to improve the bioavailability and to prolong the residence time of drugs applied topically onto the eye. Poor bioavailability of drugs from ocular dosage form is mainly due to the tear production, non-productive absorption, transient residence time, and impermeability of corneal epithelium. Though the topical and localized application are still an acceptable and preferred way to achieve therapeutic level of drugs used to treat ocular disorders but the primitive ophthalmic solution, suspension, and ointment dosage form are no longer sufficient to combat various ocular diseases. This article reviews the constraints with conventional ocular therapy and explores various novel approaches, in general, to improve ocular bioavailability of the drugs, advantages of vesicular approach over these and the future challenges to render the vesicular system more effective.

Nano-formulations conventional Through and To blood supply nerve supply
1. Pathak S, Chopra H Int J of Phar and Bio Sci :2230-7605. 2. Kompella1 UB, Kadam RS, Lee VHL (2010) NIH 1 : 435-56. 3. Thakur S, Sharma PK, Malviya R Annals of Pharmaco and Pharmaceut 2:1043. 4. Rupenthala ID et al (2011) International Journal of Pharmaceutics 411:69-77. 5. Alonso MJ et al (2010) Advanced Drug Delivery Reviews 62:100-17. 6. Khokhar P, Shukla V (2014) International Journal of Pharma Research & Review 3:29-41. 7. Ankit K et al (2011) European Journal of applied sciences 3: 86-92. 8. Costa VP, Marcelo LO, Freitas FR, Raul CM (2012) Pharmaceutics 4:252-275. 9. Morrison PW, Khutoryanskiy VV (2014) Ther Deliv 5: 297-315. 10. Washington N, Washington WC, Wilson CG (2001) Pharmaceutics: CRC Press: Boca Raton, Florida. 11. Kaur IP et al (2004) International Journal of Pharmaceutics 269: 1-14. 12. Karthika K et al, Int J Pharm Sci 2: 1-5. 13. Smedt SCD et al (2017) Advanced Drug Delivery Reviews. 14. Tao LL et al (2017) Advanced Drug Delivery Reviews 122:31-64. 15. Tekade RK et al (2017) Journal of Controlled Release 268: 19-39. 16. Pathak S, Chopra H (2011) International Journal of Pharmacy and Biological Sciences: 2230-7605. 17. Patel PB (2010) Systematic Reviews in Pharmacy 1. 18. Weisheng Guo et al (2017) Acta Pharmaceutica Sinica B 7: 281-291. 19. Yavuz B et al (2012) The Scientific World Journal. 20. Elisa JC, Antonio C, Joao M, António FA (2017) Nanomedicine: Nanotechnology, Biology, and Medicine 13: 2101-13. 21. Patel A et al (2013) World J Pharmacol 2: 47-64. 22. Madni A et al (2017) International Journal of Pharmaceutics 530: 326-45. 23. Costa VP, Marcelo LO, Freitas FR, Raul CM (2012) Pharmaceutics 2012 : 252-275. 24. Tekade RK et al (2017) Novel Journal of Controlled Release 268:19-39. 25. Khutoryanskiy VV et al (2017)Colloids and Surfaces B: Biointerfaces 155: 538-43. 26. Vandamme TF (2002) Prog Retin Eye Res 21:15-34. 27. Liang H et al (2008) Mol Vis 14:204-16. 28. Lang, Roehrs J, Jani R, Remington R (2009) Ophthalmic preparations: 856. 29. Attama AA, Reichi S, Muller-Goymann (2008) Int J Pharm 355: 307-13. 30. Muller RH et al (2008) Eur J Pharm Biopharm 68:535-544. 31. Fialho SL, Da Silva-Cunha A (2004) Clin Exp Ophthalmol 32:626-32. 32. Garty N, Lusky M, Zalish M (1994) Invest Ophthalmol Vis Sci 35: 2175-86. 33. Civiale C et al (2009) Int J Pharm 378: 177-86. 34. Pignatello R, Bucolo C, Spedalieri G, Maltese A, Puglisi G (2002) Biomaterials 23 : 3247-55. 35. Aggarwal D, Garg A, Kaur LP (2004) J Pharm Pharmacol 56: 1509-17. 36. Loftsson T, Fririksdottir H, Thorsdottir S, Stefansson E (1994) Int J Pharm 104: 181-184. 37. Kristinsson JK et al (1996) Invest Ophthalmol Vis Sci 37:1119-1203. 38. Bochot A, Fattai E, Gullk A, Couyarraze G, Couvreur P (1998) Pharm Res 15 :1364-69. 39. Ahmed I, Patton TF (1987) Int J Pharm 38: 9-21. 40. Vandamme TF, Brobeck L (2005) J Control Release 102: 23-38. 41. Saettone MF, Perini G, Carafa M, Santucci E, Alhaique F (1996) STP Pharma Sci 6 : 94-98. 42. Anatomy of human eye february, 2018. 43. Eye anatomy retrieved from www.valleyeyecare.org. February, 2018. 44. Evans HE, Lahunta A (2010) Guide to the dissection of the dog, 7th edn Missouri: Saunders Elsevier.
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2019.3.9 Analytical chemistry “Development of validated specific stability-indicating HPTLC method for the simultaneous determination of Ledipasvir and Sofosbuvir in fixed dose tablet formulation” “Development of validated specific stability-indicating HPTLC method for the simultaneous determination of Ledipasvir and Sofosbuvir in fixed dose tablet formulation” A Suganthi a Department of Pharmaceutical Analysis, College of Pharmacy, SRIPMS affiliated to Dr. M.G.R Medical University, Coimbatore, India. S Satheshkumar Department of Pharmaceutical Analysis, College of Pharmacy, SRIPMS affiliated to Dr. M.G.R Medical University, Coimbatore, India. T.K Ravi a Department of Pharmaceutical Analysis, College of Pharmacy, SRIPMS affiliated to Dr. M.G.R Medical University, Coimbatore, India. 01 04 2019 2 2 228 243 18 07 2018 30 12 2018 Copyright © 2019, Sami Publishing Company (SPC). 2019 https://www.ajnanomat.com/article_81204.html

A simple, specific, sensitive and rapid stability-indicating high performance thin layer chromatographic method has been developed for the simultaneous estimation of ledipasvir and sofosbuvir in combined dosage form. In this method, the separation was achieved on silica gel 60F254 thin layer chromatography plates using mobile phase comprising of hexane: ethyl acetate: methanol (5:3:2,v/v/v) with 3 drops of ammonia at 288 nm as selected wavelength on a densitometer. The Rf value of sofosbuvir and ledipasvir were observed to be 0.21±0.02 and 0.43±0.02, respectively. The linearity, precision, accuracy, robustness, specificity, limit of detection and limit of quantitation of the method were validated according to the ICH guidelines. The linear regression analysis for calibration plots produced r2=0.9948±0.0005 and r2 = 0.9927±0.0003 for ledipasvir and sofosbuvir, respectively. Percent recovery of the drugs from tablet formulation was carried out by standard addition method and was found to be close to 100 and relative standard deviation was less than 2%, which indicated good accuracy and precision of the method. The factors evaluated in the robustness test were determined to have an insignificant effect on the selected responses. To make the method more specific stress studies were conducted for both drugs individually as well as in the combined form by subjected to acid, alkali and neutral hydrolysis, oxidation, thermal and photolytic degradation. Degradation studies indicated ledipasvir to be susceptible to acid and alkaline hydrolysis, thermal, photolytic and oxidative degradation whereas sofosbuvir was susceptible only to alkaline hydrolysis. The degradation product peaks were well resolved from the pure drug with significant differences in their Rf values. The results indicate that the method is suitable for the routine quality control testing of marketed tablet formulation.

Ledipasvir Sofosbuvir HPTLC Stress ICH guidelines
1. National Center for Biotechnology Information. PubChem Compound Database; CID=67505836,https://pubchem.ncbi.nlm.nih.gov/compound/67505836 (accessed Apr. 10, 2018). Ledipasvir structure 2. Pol, S., Vallet-Pichard, A., and Corouge, M. (2016) Daclatasvir-sofosbuvir combination therapy with or without ribavirin for hepatitis C virus infection: from the clinical trials to real life. Hepatic Medicine: Evidence and Research. 8: 21–26. 3. Fung, A., Jin, Z., Dyatkina, N., Wang, G., Beigelman, L., and Deval, J. (2014). Antimicrobial Agents and Chemotherapy. 58: 3636-3645. 4. National Center for Biotechnology Information. PubChem Compound Database;CID=45375808,https://pubchem.ncbi.nlm.nih.gov/compound/45375808 (accessed Apr. 10, 2018). Sofosbuvir structure 5. Afdhal, N., Zeuzem, S., Kwo, P., Chojkier, M., Gitlin, N., Puoti, M., Romero-Gomez, M., Zarski, J. P., Agarwal, K., Buggisch, P., Foster, G.R., Bräu, N., Buti, M., Jacobson, I. M., Subramanian, G.M., Ding, X., Mo, H., Yang, J.C., Pang, P.S., Symonds, W. T., McHutchison, J. G., Muir, A. J., Mangia, A., and Marcellin, P. (2014). N Engl J Med. 370: 1889–1898. 6. Mohan Vikas, P., Satyanarayana, T., Vinod Kumar, D., Mounika, E., Sri Latha, M., Anusha, R., and Sathish, Y. (2016) J. Global Trends Pharm. Sci. 7: 3013-3015. 7. Devilal, J., Durgaprasad, B., Pal, N., and Avanapu, S. R. (2016) WJPPS. 6: 1312-1321. 8. Rezk, M., Basalious, E., and Karim, A. I. (2015) J. Pharmaceut. Biomed. Anal. DOI: 10.1016/j.jpba.2015.05.006. 9. Nebsen, M., and Eman, S. E. (2016) J. Chromatogra. Sci. 54: 1631–1640. 10. Debasish, S., and Gananadhamu, S. (2017) J. Pharmaceut. Biomed. Anal. 138: 29-42. 11. Amira, S., Eldin, S. M., Azab, A. S., and Magda El-Maamly. (2017) Antiviral drugs. J. Pharm. Pharmacol. Res. 1: 028-042. 12. Nehal, F. F., and Nada, A.W.S. (2017). J of liquid chromatography and related technologies. 327-332. 13. Madhavi, S., and Prameela R. A. (2017). Int. J. Pharm. Pharmaceut. Sci. 9: 35-41. 14. Bakht, Z., Faisal, S., and Waseem, Hassan. (2016). Chromatographia. 79: 1605–1613. 15. Mahsa, K., Mahmoud, R. S., Vahid, M., and Nahid, T. Z. (2018). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 194: 141-151. 16. Fathy, M. S., Khalid, A. A., Ahmed, A. A., Ahmed El-Olemy., and Ebrahim, A. (2017). J. Adv. Pharmacy Res. 1: 185-192. 17. Fathy, M. S., Khalid, A. A., Ahmed, A. A., Ahmed El-Olemy., and Ebrahim, A. (2017). Anal. Che. Lett. 7: 241-247. 18. Elkady, E. F., and Aboelwafa, A. A. (2016). Int. J. AOAC. 99: 1252-1259. 19. Sherif Abdel‐Naby Abdel‐Gawad. (2017). Eur. J. Chem. 8: 8‐12. 20. Guidance for Industry, Analytical Procedures and Methods Validation, Chemistry, Manufacturing, and Controls Documentation, Draft Guidance, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER), July 2000. 21. ICH Harmonised Tripartite Guideline Stability Testing of New Drug Substances and Products Q1A(R2), Current Step 4 version, dated 6 February 2003. 22. Monika. B., and Singh, S. J., (2002). Biomed. Anal. 28: 1011–1040. 23. Sethi, P. D., 1997. HPTLC Quantitative Analysis of drug in pharmaceutical formulation, third ed. New Delhi: CBS Publishers and Distributors, pp. 1-56. 24. ICH Harmonised Tripartite Guideline, Validation Of Analytical Procedures: Text and Methodology, Q2(R1), Current Step 4 version, Parent Guideline dated 27 October 1994, (Complementary Guideline on Methodology dated 6 November 1996 incorporated in November 2005).
Asian J. Nanosci. Mater. Sami Publishing Company (SPC) Asian Journal of Nanosciences and Materials 2645-775X Sami Publishing Company (SPC) 327 10.26655/ajnanomat.2019.3.10 Synthesis of nanomaterials Red Light Emission of POSS Triol Chelated with Europium Red Light Emission of POSS Triol Chelated with Europium Prem Kumar Begari Research and Development, Tata Steel Limited, Jamshedpur, India 831001. Praveen Kumar Avvaru Department of Chemistry, Changwon National University, Changwon 641-773, Republic of Korea. Hima Binduc Pardeshi Telangana Trible Welfare Residential Degree College, Suryapet, Telangana 508213. Kumar Mukherjee Asim Research and Development, Tata Steel Limited, Jamshedpur, India 831001. Shankar Patra Abhay Research and Development, Tata Steel Limited, Jamshedpur, India 831001. 01 04 2019 2 2 244 256 02 08 2018 04 01 2019 Copyright © 2019, Sami Publishing Company (SPC). 2019 https://www.ajnanomat.com/article_81350.html

The europium silsesquioxane complexes are synthesized with Eu(NO3)3∙6H2O to corner cap with incomplete condensation of hepta(3,3,3-trifluoropropyl)-tricycloheptasiloxane trisodium silanolate (7F-T7-(ONa)3 along with the 1,3,5,7,9,11,14-hepta isobutyltricyclo [7,3,3,15,14] heptasiloxane-3,7,11-trisilanol (trisilanolisobutyl-POSS). These europium silsesquioxane complexes are highly soluble in organic solvents and show a red emission. Photoluminescence of Eu3+-CF-POSS is higher compared with Eu3+-CH-POSS. This fluorescence enhancement is due to the significant effect of the large POSS units. The europium silsesquioxane complexes were characterized by Fourier transform infrared spectrophotometer (FT–IR), field emission scanning electron microscopy (FE–SEM), energy dispersive X-ray analysis (EDX) and thermogravimetric analysis (TGA). The excitation and emission pattern of polyhedral europium silsesquioxanes was studied using photoluminescence spectrophotometer. The results show an excellent emission property at the wavelength between 612 and 620 nm which correspond to the 5D0–7F2 transition of europium in polyhedral silsesquioxanes.

hepta(3 3 3-trifluoropropyl)-tricycloheptasiloxane trisodium silanolate (7F-T7-(ONa)3
[1] Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Santos DAD, Bre JL, ogdlund ML, Salaneck WR (1999) Nature 397:121-128. [2] Cao Y, Parker ID, Yu G, Zhang C, Heeger AJ (1998) Nature 397:414-417. [3] Hide F, Diaz-Garcia MA, Schwartz BJ, Anderson MR, Pei Q, Heeger AJ (1996) Science 273:1833-1836. [4] Lis S, Elbanowski M, Makowska B, Hnatejko Z (2002) J. Photochem. Photobiol. A 150:233-247; deSa GF, Malta OL, deMelloDonega C, Simas AM, Longo RL, Santa-Cruz PA, DaSilva Jr EF (2000) Coord. Chem. Rev. 196:165-195. [5] Green WH, Le KP, Grey J, Tiffani AT, Sailor MJ (1997) Science 276:1826-1828. [6] Robert CL, Lidia MV, Margie CB, Sean Y (2006) Cytometry Part A 69A:767–778. [7] Alpha B, Ballardini R, Vincenzo B (1990) Photochem. Photobiol. 52:409-416. [8] Hanssen RWJM, van Santen RA, Abbenhuis HCL (2004) Eur. J. Inorg. Chem. 4:675-683; Lorenz V, Edelmann FT (2004) Z. Anorg. Allg. Chem. 630:1147-1157. [9] Abbenhuis HCL (2000) Chem. Eur. J. 6:25-32. [10] Harrison PG (1997) J. Organomet. Chem. 542:141-183. [11] Volker L, Steffen B, Frank TE (2008) Z. Anorg. Allg. Chem. 634:2819-2824. [12] Feher F (1986) J. Am. Chem. Soc. 108:3850-3852; Volker L, Axel F, Stephan G, John WG, Frank TE (2000) Coord. Chem. Rev. 206-207:321-368. [13] Borisov SN, Voronkov MG, Lukevits EY (1970) Organosilicon Heteropolymers and Hetero Compounds, Plenum, New York; Saam JC in: Zeigler JM, Fearon FWG (Eds.) (1990) Silicon Based Polymer Science, Advances in Chemistry 224, American Chemical Society, Washington. [14] Sigel GA, Bartlett RA, Decker D, Olmstead MM, Power PP (1987) Inorg. Chem. 26: 1773-1780. [15] Hrncir DC, Skiles GD (1988) J. Mater. Res. 3:410-412. [16] Murugavel R, Voigt A, Walawalkar MG, Roesky HW (1996) Chem. Rev. 96:2205-2236. [17] Herrmann WA, Anwander R, Dufaud V, Scherer W (1994) Angew. Chem., Int. Ed. 33: 1285-1286. [18] Gun’ko YK, Reilly R, Edelmann FT, Schmidt HG (2001) Angew. Chem., Int. Ed., 40: 1279-1281; Stefano M, Fabio C, Enrico B (2014) New J. Chem. 38:2480-2485. [19] Wu G, Chen Y, Xu DJ, Liu JC, Sun W, Shen Z (2009) J. Organomet. Chem. 694:157-160. [20] Prem Kumar B, Vijay Kumar BVD, Raghavan CM, Harshavardhan SJ, Yi SS, Gandhi S, Jian zhuang J, Kiwan J, Shin DS (2013) J Mater Sci 48:7533-7539. [21] Neli M, Makoto T, Kohtaro O (2007) Organometallics 26:1402-1410. [22] Kłonkowski AM, Szałkowska I, Lis S, Hnatejko Z (2008) Opt. Mater 30:1225-1232. [23] Blasse G, Grabmaier BC, Luminescent Materials, Springer-Verlag, Berlin, 1994, 41 p. [24] Nazarov MV, Jeon DY, Kang JH, Popovici EJ, Muresan LE, Zamoryanskaya MV, Tsukerblat BS (2004) Sol. Stat. Commun. 131:307-311.