2019 2 3 0 110
Synergistic effect of liquid crystals on the additive performance of poly acrylate in lubricating oil 2 2 Multifunctional additive performance of poly acrylate in presence of selective liquid crystal structures were evaluated by standard ASTM methods. Homopolymer of mixed acrylate (octyl, decyl and dodecyl) was synthesised and characterized by thermo gravimetric, spectroscopy and viscometric methods. Additive performances of the polymer were evaluated as viscosity modifier (VM), thickening agent (TA), pour point depressant (PPD) and anti wear (AW) additive. Physical blend of the polymer with six different types of liquid crystals (LC) were also made and evaluated for their performance. The results indicated that all the LC-blended samples act as better VM, PPD, along with excellent AW and thickening performance compare to the pure polymer sample. 1 - 257 270 - - Mahua Upadhyay Natural Product and Polymer Chemistry Laboratory, Department of Chemistry, University of North Bengal, Darjeeling-734013, India. Natural Product and Polymer Chemistry Laboratory, India sayak2002@yahoo.com - - Malay Kumar Das Department of Physics, University of North Bengal, Darjeeling-734013, India. Department of Physics, University of North India mkdnbu@yahoo.com - - R Dąbrowski Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland. Institute of Chemistry, Military University Poland bijetamitra50@gmail.com - - Pranab Ghosh Natural Product and Polymer Chemistry Laboratory, Department of Chemistry, University of North Bengal, Darjeeling-734013, India. Natural Product and Polymer Chemistry Laboratory, India pizy12@yahoo.com Anti wear pour point depressant viscosity modifier multifunctional performances [1]. Ghosh P., Das M. J. Chem. Eng. Data, 2013, 58:510##[2]. Jung K.M., Chun B.H., Park S.H., Lee C.H., Kim S.H. J. Appl. Polym. Sci., 2011, 120:2579##[3]. Du T., Wang S., Liu H., Song C., Nie Y. Petrol. Sci. Technol., 2012, 30:212##[4]. Khidr T.T. Petrol. Sci. Technol., 2007, 25:671##[5]. Ghosh P., Karmakar G., Das M.K. Petrol. Sci. Technol., 2014, 32:281##[6]. Carrión F.J., Martínez-Nicolás G., Iglesias P., Sanes J., Bermúdez M.D. Int. J. Mol. Sci., 2009, 10:4102##[7]. Eidenschink R. Angew. Chem. Int. Ed., 1988, 27:1579##[8]. Tichi J.A. Tribol. Trans., 1990, 33:363##[9]. Ghosh P., Upadhyay M., Das M.K. Liq. Cryst., 2014, 41:30##[10]. Brahman D., Sinha B. J. Chem. Eng., 2011, 56:3073##[11]. Brahman D., Sinha B. J. Chem. Thermodyn., 2013, 67:13##[12]. Tanveer S., Prasad R. Ind. J. Chem. Technol., 2006, 13:398##[13]. Ghosh P., Das T., Nandi D. Res. J. Chem. Environ., 2009, 13:17##[14]. Ghosh P., Pantar A.V., Rao U.S., Sarma A.S. Ind. J. Chem. Technol., 1998, 5:309##[15]. Mortier R.M., Fox M.F., Orszulik S.T. Chemistry and Technology of Lubricants, Springer, Dordrecht.##[16]. Nassar A.M. Petrol. Sci. Technol., 2008, 26:514##[17]. Penfold J., Staples E., Cummins P., Tucker I., Thompson L., Thomas R.K., Simister E.A. R.Lu J. J. Chem. Soc., Faraday Trans., 1996, 92:1773##[18]. Abdul A., Nasser A.A.A.A.M., Ahmeh N.S., Kafrawy A.S.E.I., Kamal R.S. Petrol. Sci. Technol., 2009, 27:20##[19]. Choudhary R.B., Anand O.N., Tyagi O.S., J. Chem. Sci., 2009, 121:353##[20]. Latyshev V.N., Novikov V.V., A.Syrbu S., Kolbashov M.A. J. Friction. Wear., 2009, 30:411##[21]. Molenda J., Makowska M. Tribol. Lett. 2006, 21:39##
Synthesis and characterization of CaO catalyst obtained from achatina achatina and its application in biodiesel production 2 2 In this research study, Achatina achatinashells was used as the source of raw material to produce calcium oxide which was used as a catalyst in the production of biodiesel. The main aim of this study was to investigate the effect of varying temperatures on the calcium oxide formed using A. achatina during the calcination process for their possible use as a heterogeneous catalyst in the production of biodiesel. The shells were first grinded and then calcinated at different temperatures ranging from 0 °C to 1000 °C. After calcination, the CaCO3 present in the A. achatinashell was converted to calcium oxide. The obtained calcium oxide was characterized using Fourier transform infrared spectroscopy (FT-IR). The asymmetric stretching of the CO32- (cm-1) absorption was not proportional with the increasing temperature as it was observed over the plane vibrational modes of CO32-(cm-1). Also, the O-Hstretching band (cm-1) at 100 °C and 800 °C had similar absorption values. Pearson correlation revealed both negative and positive relationship between the absorption rate and the temperature, disclosed a significant difference at pA. achatina shell is a suitable catalyst in the production of Biodiesel because it is readily available and has no adverse effect on the environment. 1 - 271 277 - - Oluwatobi O. Amusan Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria Department of Chemistry, University of Ilorin, Nigeria - - Hitler Louis CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China CAS Key Laboratory for Nanosystem and Hierarchical China louis@nanoctr.cn - - Adejoke T. Hamzat Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria Department of Chemistry, University of Ilorin, Nigeria - - Amusan Oluwatobi Omotola Department of Chemistry, University of Ilorin, Ilorin Department of Chemistry, University of Ilorin, Nigeria aoomotola@gmail.com - - Oluwatomisin Oyebanji Department of Chemistry, University of Ibadan, Ibadan, Oyo State, Nigeria Department of Chemistry, University of Ibadan, Nigeria odetayooluwatomisin@yahoo.com - - Ayodeji T. Alagbe Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria Department of Chemistry, University of Ilorin, Nigeria - - Thomas O. Magu CAS Key Laboratory for Green Printing, Institute of Chemistry, University of Chinese Academy of Sciences, 100190 Beijing, China CAS Key Laboratory for Green Printing, Institute China Achatina achatina Calcium oxide Heterogeneous catalyst Biodiesel [1]. Basumatary S. J. Chem. Bio. Phy. Sci., 2012, 3:551##[2]. Basumatary S. Res. J. Chem. Sci., 2013, 3:99##[3]. Atadashi I.M., Aroua M.K., A.R., Abdul Aziz, N.M.N. J. Ind. Eng. Chem., 2013, 19:14##[4]. Sylvester C., Izah E.I, Ohimain A. Greener J. Biol. Sci. 2013, 3:001##[5]. Nivetha S., Vetha R.D. J. Chem. Pharm. Res., 2013, 5:53##[6]. Lam M.K., Lee K.T., Mohamed A.R. Biotechnol. Adv., 2010, 28:500##[7]. Melero J.A., Iglesias J., Morales G. Green Chem., 2009, 11:1285##[8]. Sakunthala M., Sridevi V., Kumar K.V., Rani K. J. Chem. Bio. Phy. Sci., 2013, 3:1564##[9]. Annam R.A., Aravindh K.J. Int. J. Chem. Tech. Research., 2015, 8:651##[10]. Magu T.O., Ita B.I., Ehi-Eromosele C.O. Journal of Industrial Technology, 2018, 3:1##[11]. Macleod C.S., Harvey A.P., Lee A.F., Wilson K. Chemical Engineering Journal, 2008, 135: 63## [12]. Marinkovic D.M., Stankovic M.V., Velickovic A.V., Avramovic J.M., Miladinovic M.R., Stamenkovic O.O., Veljkovic V.B. Renewable and Sustainable Energy Reviews, 2016, 56:1387##[13]. Alonso D.M., Vila F., Mariscal R., Ojeda M., Granados M.L., Santamaria-Gonzalez J., 2010, 158:114##[14]. Aldes L., Palita T., Rastidian M. Indo. J. Chem., 2013, 13:176##
Thermal decomposition of ammonium perchlorate-commercial nano-TiO2 mixed powder 2 2 Thermal decomposition of ammonium perchlorate was improved via addition of transition metals and metal oxides. This work investigates the thermal decomposition of the ammonium perchlorate under the catalytic effect of the commercial nano-TiO2 (nTiO2). Characterization of nTiO2 showed that its average particle size ranged from 10 to 25 nm with a relatively spherical morphology. Ammonium perchlorate and nTiO2 mixes were prepared by adding three different nTiO2 mass fractionsof 1, 2, and 3 wt% to pure ammonium perchlorate. The results of thermogravimetry analysis revealed that the addition of nTiO2 to pure ammonium perchlorate resulted in a significant decline in its decomposition temperature. The most observed decrease in the decomposition temperature was 61 °C resulted from the addition of 3 wt.% nTiO2. 1 - 278 285 - - Mostafa Mahinroosta School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology School of Chemical, Petroleum, and Gas Engineering Iran mahinroosta2010@gmail.com Titania Ammonium Perchlorate Thermal decomposition Nanoparticle [1]. Nikam A.P., Ratnaparkhiand M.P., Chaudhari S.P. Int. J. Res. Dev. Pharm Life Sci., 2014, 3:1121##[2]. Marie-Isabelle B. Open Nanosci J., 2013, 5:64##[3]. Suresh S. Am. J. Nanosci Nanotechnol, 2013, 1:27##[4]. Biener J., Wittstock A., Baumann T.F., Weissmüller J., Bäumer M., Hamza A.V. Mater, 2009, 2:2404##[5]. MortezaAli A., Saeideh R.S. J. Nanostruct Chem., 2013, 3:35##[6]. Karimi L., Zohoori S. J. Nanostruct Chem., 2013, 3:32##[7]. Vijayalakshmi R., Rajendran V. Archives Appl. Sci. Res., 2012, 4:1183##[8]. Chen Y., Ma K., Wang J., Gao Y., Zhu X., Zhang W. Mater Res. Bull, 2018, 101:56##[9]. Ramdani Y., Liu Q., Huiquan G., Liu P., Zegaoui A., Wang J. Vacuum, 2018, 153:277##[10]. Chen L., Zhu D. Ceram Int., 2015, 41:7054##[11]. Chen W., Li F., Liu L., Li Y. J. Rare Earths, 2006, 24:543##[12]. Zhenye M.A., Fengsheng L., Aisi C. Nanosci, 2006, 11:142##[13]. Yanping W., Junwu Z., Xujie Y., Lude L., Xin W. Thermochimica Acta., 2005, 437:106##[14]. Hungzhen D., Xiangyang L., Guanpeng L., Lei X., Fengsheng L. Mater Process Technol, 2008, 208:494##[15]. Guorong D., Xujie Y., Jian C., Guohong H., Lude L., Xin W. Powder Technol, 2007, 172:27##[16]. Satyawati S.J., Prajakta R.P., Krishnamurthy V.N. Def. Sci. J. 2008, 58:721##[17]. Zhao S., Ma D. J. Nanomat., 2010, 2010:5 pages##[18]. Han A., Liao J., Ye M., Li Y., Peng X. Chin. J. Chem. Eng., 2011, 19:1047##[19]. Yifu Z., Xinghai L., Jiaorong N., Lei Y., Yalan Z., Chi H. J. Solid State Chem., 2011, 184:387##[20]. Yu Z., Chen L., Lu L., Yang X., Wang X. Chin. J. Catal., 2009, 30:19##[21]. Alizadeh-Gheshlaghi E., Shaabani B., Khodayari A., Azizian-Kalandaragh Y., Rahimi R. Powder Technol, 2012, 217:330##[22]. Wang J., He S., Li Z., Jing X., Zhang M., Jiang Z. J. Chem. Sci., 2009, 121:1077##[23]. Liu T., Wang L., Yang P., Hu B. Mater Lett., 2008, 62:4056##[24]. Duan H., Lin X., Liu G., Xu L. Chin. J. Chem. Eng., 2008, 16:325##[25]. Pratibha S., Reena D., Kapoor I.P.S., Singh G. Indian J. Chem., 2010, 49A:1339##[26]. Chen Y., Ma K., Wang J., Gao Y., Zhu X., Zhang W. Mater Res. Bull., 2018, 101:56##[27]. Mahdavi M., Farrokhpour H., Tahriri M. Mater Chem. Phys., 2017, 196:9##[28]. Yu C., Zhang W., Gao Y., Chen Y., Ma K., Ye J., Shen R., Yang Y. Mater Res. Bull., 2018, 97: 483##[29]. Paulose S., Raghavan R., George B.K. J. Ind. Eng. Chem., 2017, 53:155##[30]. Bu X., Liu F., Zhang Z., Wang Z., Liu J., Liu W. Mater Lett., 2018, 219:33##[31]. Li G., Bai W. Chem. Phys., 2018, 506:45##[32]. Vargeese A. Mater Chem. Phys. 2013, 139:537##[33]. Fujimura K., Miyake A. J. Therm Anal. Calorim, 2010, 99:27##
Preparation of different manganese oxide structures via controlling the concentration and the type of the alkaline media 2 2 Birnessite and manganite materials were prepared using a simple precipitation process in an alkaline medium. Potassium hydroxide and tetraethyl ammonium hydroxide (TEAH) used as the precipitating agents. Different techniques such as XRD, DSC, TGA, FT-IR, TEM and N2 adsorption analyses were employed to characterize the prepared samples. The results revealed that the formed phase in the prepared sample is dependent on the concentration of the precipitating agent. In addition, the XRD results showed the formation of various phases through controlling the concentration of the precipitating agent. Pure phase of birnessite produced in the high alkaline medium, and manganite (γ-MnOOH) at relatively low alkalinity. The samples prepared by using TEAH were well crystalline compared with the analogue one prepared by KOH. The obtained results elaborated the role of TEAH in directing the order of the particles during the preparation step. 1 - 286 300 - - Samer Said Egyptian Petroleum Research Institute, Nasr City, Egypt Egyptian Petroleum Research Institute, Nasr Egypt samer@hotmail.com - - Mary Riad Egyptian Petroleum Research Institute, Nasr City, Egypt Egyptian Petroleum Research Institute, Nasr Egypt maryriad2006@yahoo.com - - Sara Mikhail Egyptian Petroleum Research Institute, Nasr City, Egypt Egyptian Petroleum Research Institute, Nasr Egypt saramikhails@hotmail.com Transvermillion Olanzapine Piper betel films Biopolymer [1]. Yu, J., Ph. Savage. Industrial Engineering Chemical Resresearch, 2000, 39:4014 ##[2]. Singh A., Fernando S. Chemical Engineering Technology, 2007, 30:1716##[3]. Meng Y., Song W., Huang H., Ren Z., Chen S.Y., Suib S. Journal of Amrican Chemical Society, 2014, 136:11452##[4]. Ahsanulhaq Q., Kim S.H., Hahn Y.B. Journal of Alloys and Compounds, 2009, 484:17##[5]. Manceau A., Lanson M., Takahashi Y., American Mineralogy, 2014, 99:2068##[6]. Yang D.S., Wang M.K. Clays-Clay Mineral, 2003, 51:96##[7]. Said S., Riad M., Helmy M., Mikhail S., Khali L. Journal of Nanostructure Chemistry, 2016, 6:171##[8]. Said S., Riad M., Helmy M., Mikhail S., Khali L. Chemical Material Research, 2014, 6:27##[9]. Kitchaev D., Dacek S., Sun W., Ceder G. Journal of American Chemical Society, 2017, 139:2672##[10]. Atkins A.L., Shaw S., Peacock C.L. Geochimistry Cosmochimistry Acta, 2014 144:109##[11]. Regmi R., Tackett R., Lawes G. Journal of Management Material, 2009, 321:2296##[12]. Athouel L., Arcidiacono P., Ramirez-Castro C., Crosnier O., Hamel C., Dandeville Y., Guillemet P., Scudeller Y., Guay D., Belanger D., et al. Electrochimical Acta, 2012, 86:268##[13]. Villalobos M., Escobar-Quiroz I.N., Salazar-Camacho C. Geochimstry. Cosmochimistry. Acta, 2014, 125:564##[14]. Liu G., Chen L., Yu J., Feng N. Applied Catalysis A: General, 2018, 568:157##[15]. Zhang G., Liu Y., Guo F., Hu Y., Liu X.Z., Qian Y. Solid State Communcation, 2005, 134:523##[16]. Saad L., Sobhi Z., Mikhail S. Egyptian Journal of Petroleum, 2002, 11:67##[17]. Tiana X., Yang L., Qing X., Yu K., Wang X., Sensor Actua. B., 2015, 207:34##[18]. Misnon I.I., Abd Aziz R., Zain N.K., Vidhyadharan M. B., Krishnan S.G., Jose R., Material Research Bulletin, 2014, 57:221##[19]. Huang M., Zhang Y.X., Li F., Zhang L.L., Ruoff R.S., Wen Z.Y., Liu Q. Science Rep., 2014, 4:3878##[20]. Yan D., Zhang H., Li S., Zhu G., Wang Z., Xu H., Yu A. Journal of Alloys and Compdounds, 2014, 607:245##[21]. Ghaly M., El-Dars F., Hegazy M., Abdel Rahman R. Chemical Engineering Journal, 2016, 284:1373##[22]. Nakayama M., Nishiyama M., Shamoto M., Tanimoto T., Tomono K., Inoue R. Journal Electrochemical Society, 2012, 159:1176##[23]. Dinnebier E., Billinge J. Powder Diffraction Theory and Practice The Royal Society of Chemistry, 2008; p 1-583##[24]. Lefkowitz J., Elzing E. Chemical Geology, 2017, 466:524##[25]. De Wolff P.M. Acta Crystallography, 1959, 12:341##[26]. Gai J., Liu J., Suib S. Chemical Material, 2002, 14:2071##[27]. Atique Ullah A.K.M., Fazle Kibria A.K.M., Akter M., Khan M.N.I., Maksud M.A., Jahan R.A., Firoz S.H. Journal of Saudi Chemical Society, 2017, 21:830##[28]. Vro D., Brsn L., Posr J. Amircan Mineralogy, 1989, 74:177##[29]. Zhang W., Yang Z., Liu Y., Tang S., Han X., Chen M. Journal of Crystal Growoth, 2004, 263:394##[30]. Liu G., Liao S., Zhu D., Hua Y., Zhou W. Chemical Engineering Journal, 2012, 213:286##[31]. Zhang W., Yang Z., Liu Y. Journal of Crystal Growoth, 2004, 263:394##[32]. Sharma P., Whittingham M. Material Letter, 2001, 48:319##[33]. Kang L., Zhang M., Liu Z.H., Ooi K. Spectrochimica Acta. A., 2007, 67:864##[34]. Potter R., Rossman G. Amrican Minerology, 1979, 64:1199##[35]. Kohler T., Armbrustor T., Libowitzky E. Journal of Solid State Chemistry, 1997, 133:486##[36]. Rives V., Prieto O., Del Arco M. Thermochima Acta., 2003, 401:95##[37]. Zhang Y., Qin Z., Wang G., Zhu H. Dong M., Li S., Wu Z., Li Z., Wu Z., Zhang J. Applied Catalysis Environmental B., 2013, 129:172##[38]. Xi G., Peng Y., Zhu Y., Xu L., Zhang W., Yu W., Qian Y. Material Research Bulletin, 2004, 39:1641##[39]. Li Y., Wei D., Du Y. Chemosphere, 2015, 119:282##
Cyto-toxicity and oligodynamic effect of bio-synthesized silver nanoparticles from plant residue of Artocarpus altilis and its spectroscopic analysis 2 2 The medicinal plant residue obtained to synthesis AgNPs is the thrust area of research today. The present research work emphasis on the AgNPs synthesized from a medicinal plant residue Artocarpus altilis whose secondary metabolites bear responsible for the confined size of the AgNPs. Further, the AgNPs were analyzed for Physico-chemical analysis, where FT-IR Peak value gives the functional groups of A. altilis. FESEM analyses show surface morphology with 44 nm. EDAX analyses of show metal precursor involved in the process. XRD patterns show the crystalline structure. The AgNPs was analysised for the antibacterial assay against five human pathogens. Finally, cyto-toxic activity of AgNPs was analyzed with two human cancer cell lines namely MCF 7 lung cancer cell line and A549 breast cancer cell line. Hence, the novel and eco-friendly AgNPs are safe with its biocompatibility which becomes a promising agent in the biomedical precisely. 1 - 301 313 - - Vasanth Nayagam Department of Botany, Alagappa University, Science Block, Karaikudi-630 003, India Department of Botany, Alagappa University, India vasanthresearchsjc@gmail.com - - Kumaravel Palanisamy Department of Biotechnology, Vysya College, Salem- 636 103.Tamil Nadu, India Department of Biotechnology, Vysya College, India - - Dons Thiraviadoss Department of Biotechnology, Vysya College, Salem- 636 103.Tamil Nadu, India Department of Biotechnology, Vysya College, India Cyto-toxic antibacterial Physico-chemical Crystalline Artocarpus altilis [1]. Ahmed S., Ahmad M., Swami B.L. J. Adv. Res., 2016, 7:17##[2]. Rai M.K., Deshmukh S.D., Ingle A.P., Gade A.K. J Appl Microbiol. 2012, 112:841##[3]. Anasane N., Golinska P., Wypij M., Rathod D., Dahm H., Rai M. Mycoses, 2016, 59:157##[4]. Wypij M., Golinska P., Dahm H., Rai M. IET Nanobiotechnol, 2017, 11:336##[5]. Song J.Y., Kim B.S. Bioprocess and Biosystems Engineering, 2009, 32:79##[6]. Briley-Saebo K., Bjørnerud A., Grant D., Ahlstrom H., Berg T., Kindberg G.M. Cell Tissue Res., 2004, 316:315##[7]. Gupta A.K., Gupta M. Biomaterials, 2005, 26:3995##[8]. Schütt W., Grüttner C., Häfeli U.O., Zborowski M., Teller J., Putzar H. Hybridoma, 1997, 16:109##[9]. Mahmoudi M., Simchi A., Milani A.S., Stroeve P. J. Colloid Interface Sci., 2009, 336:510##[10]. Chandra Sekhar E., Krishna Rao K.S.V., Madhu Sudana Rao K., Bahadur Alisha S. Journal of Applied Pharmaceutical Science, 2018, 8:073##[11]. Jayasree L., Janakiram P., Madhavi R. J. World Aquacult Soc., 2006, 37:523##[12]. Kim S., Ryu D.Y. J. Appl. Toxicol., 2013, 33:78##[13]. Mallick K., Witcomb M.J. Scurrell M.S. Mater. Chem. Phys., 2005, 90:221##[14]. Kovács D., Szke K., Igaz N., Spengler G., Molnár J., Tóth T., Madarás D., Rázga Z., Kónya Z., BorosKiricsi I.M. Nanomedicine, 2016, 12:601##[15]. Mala R., Ruby Celsia A.S., Malathi Devi S., Geerthika S. Materials Science and Engineering, 2017, 225:12155##[16]. Charbgoo F., Ahmad M.B., Darroudi M. Int. J. Nanomed., 2017, 12:1401##[17]. Allafchian A., Jalali S.A.H., Aghaei F., Farhang H.R. IET Nanobiotechnol, 2018, 12:1##[18]. Khatami M., Heli H., Jahani P.M., Azizi H., Nobre M.A.L. IET Nanobiotechnol, 2017, 11: 709##[19]. Siddiqi K.S., Husen A., Rao R.A.K. J Nanobiotechnol.,2018,16:14##[20]. Jones S.A., Bowler P.G., Walker M., Parsons D. Wound Repair Regen, 2004, 12:288##[21]. Allahverdiyev A.M., Abamor E.S., Bagirova M., Rafailovich M. Fut Microb, 2011, 6:933##[22]. Guzman M., Dille J., Godet S. Nanomedicine, 2012, 8:37##[23]. Reddy N.J., Vali D.N., Rani M., Rani S.S. Mat. Sci. Eng. C., 2014, 34:115##[24]. Kumar S.P., Balachandran C., Duraipandiyan V., Ramasamy D., Ignacimuthu S., Al-Dhabi N.A. Appl Nanosci, 2015, 5:169##[25]. Kanipandian N., Kannan S., Ramesh R., Subramanian P., Thirumurugan R. Mat. Res. Bull., 2014, 49:494##[26]. Mosmann T. J. Immunol Methods, 1983, 65:55##
A smart spproach for delivering of nanosized olanzapine using piper betel biopolymer rate controlling flexi films for transvermillion delivery 2 2 The aim of the study was to prepare and characterize the nanosize drug loaded bio-flexi films using the novel bioexcipient isolated from the fresh leaves of the piper betle (bioexcipient P) and to explore the potentiality of the lip skin as a novel transvermillion drug delivery system. The bioexcipient prepared using a simplified economical process and was subjected to various physiochemical evaluations along with the spectral analysis including UV, FT-IR, SEM, Mass and 1H NMR. The nanosized bioflexi film formulated with the novel bioexcipient was screened for its functional properties, such as including filmability. Nanosized olanzapine loaded bioflexi films were formulated by using bioexcipient P as a film former and dextrose as a flexicizer. The formulated nanosized bioflexi films were subjected to various tests such as evaluating the, thickness, folding endurance, swelling index and in vitro release. The size of the nanoparticle was found to be 100 nm. The release of the nanosized olanzapine was maintained over 48 h, which was confirmed in in vitro release experiment. The results revealed that this biopolymer had a promising filmability and bioadhesivity. The formulated nanosized bioflexi films are feasible for delivering the olanzapine by transvermillion administration and for drugs that undergo first-pass metabolism. 1 - 314 326 - - Nookala Venkala Satheesh Madhav Faculty of Pharmacy, DIT University, Mussorie diversion road, Makkawala Dehradun, Uttarakhand. 248001 Faculty of Pharmacy, DIT University, Mussorie India satheesh_madhav@yahoo.com - - Bhavana Singh Faculty of Pharmacy, DIT University, Mussorie diversion road, Makkawala Dehradun, Uttarakhand. 248001 Faculty of Pharmacy, DIT University, Mussorie India bhavanasingh53@gmail.com Transvermillion Olanzapine Piper betel films Biopolymer [1]. Barry B.W. Dermatological formulations: percutaneous absorption. New York: Marcel Dekker., 1983, p. 127-213##[2]. Chien Y.W. Advances in transdermal systemic medication. In: Chien YW, editor. Transdermal controlled systemic medications. New York: Marcel Dekker; 1987, p. 1-24##[3]. Madhav Satheesh N.V., Yadav P.A. Acta Pharm Sin B., 2013, 3:408##[4]. Schaefer H., Redelmeier T.E. Skin barrier: principles of percutaneous absorption. Basle: Karger; 1996, p. 213-62##[5]. Madhav Satheesh N.V., Yadav A.P., Yadav B. Res J Pharm., Biol Chem Sci., 2017, 8:542##[6]. Goswami L., Madhav Satheesh N.V., Upadhyaya K. ICPJ.,2016, 5:33##[7]. Sharma S., Aggarwal G., Dhawan S. Pharm Lett., 2010, 2:84##[8]. Emil J., Nagpal V., Balwani G., Reddi S., Saha R.N. Pharm Anal Acta., 2015, 6:89##[9]. Bhana N., Foster R.H., Olney R., Plosker G.L. Drugs., 2001, 61:111##[10]. Kantrowitz T.J., Citrome L. Expert Opin Drug Saf.,2008, 7:761##[11]. Narasimhan M., Bruce O.T., Masand P. Neuropsychiatr Dis Treat., 2007, 3:579##[12]. Aggarwal G., Dhawan S., Harikumar S.L., Pharm Dev Technol., 2013, 18:916##[13]. Patra B., Das T.M., Dey S.K. J Med Plants Stud.,2016, 4:185##[14]. Srividya S., Pillai I.S., Subramanian P.S. Int J Pharm., 2015, 5:1215##[15]. Mainardes R.M., Evangelista R.C. Int J Pharm.,2005, 290:137##[16] Yu T., Andrews G.P., Jones S.D. Mucoadhesion and characterization of mucoadhesive properties. Mucosal delivery of biopharmaceuticals biology, challenges and strategies. New York: Springer science; 2014, p 35##[17]. Ueda T.C., Shah P.V., Derdzinski K., Ewing G, et al. Topical and transdermal drug products. Dissolut Technol., 2010; p 12##[18]. Rajaram M.D., Laxman D.S. Sys Rev Pharm.,2017, 8:31##[19]. Nair S.R., Ling N.T, Shukkoor M.S.A., Manickam B. J Pharm Res., 2013, 6:774##[20]. Vora N., Lin S., Madan P.L. AJPS., 2013, 8:28##[21]. Kusum D.V., Saisivam S., Maria G.R., Deepti P.U. Drug Dev Ind Pharm., 2003, 29:495##[22]. Wang Y., Challa P., Epstein D.L., Yuan F. Biomaterials, 2004, 25:4279##[23]. Gannu R., Vishnu Y.V., Kishan V., Rao Y.M. Curr Drug Deliv., 2007, 4:69##[24]. Madhav N.V.S., Yadav A.P. Int Res J Pharm., 2013, 4:198##[25]. Bottenberg P., Cleymaet R., de Muynck C., Remon J.P., Coomans D., Michotte Y., Slop D. J Pharm Pharmacol., 1991, 43:457##[26]. Baichwal M.R. Polymer films as drug delivery system. In: Advances in drug delivery systems. Bombay: MSR Foundation; 1985, p. 136##[27]. Satheesh Madhav N.V., PratapYadav A. Acta Pharmaceutica Sinica B, 2013, 3:408##[28]. Drazie J.H., Woodward G., Calvery H.O. J Pharmacol Exp Ther., 1994, 82:377##
Bio-flexy film formulation for delivery of tiagabine via oro trans-soft palatal route and its in-vitro stability study approach 2 2 The aim of research work was to formulate bio-flexy films using a novel biopolymer isolated from Rosa polyanthapetals containing tiagabine as a model drug. The soft palate drug delivery helps bypass first-pass metabolism in the liver and pre-systemic elimination in the gastrointestinal tract gets avoided. Tiagabine, anticonvulsant drug possesses t1/2:7-9 hours (low); protein binding: 96%; water solubility: 22mg/L enhances acts as selective GABA reuptake inhibitor. Side effects include abdominal pain, pharyngitis, suicidal thoughts and sudden unexpected death. Rosa polyantha biopolymer used as bio-excipient due to its biodegradability, biocompatibility, non-toxicity, non-reactiveness on soft palatal surface. Physicochemical characterization of biopolymer displayed inbuilt filmability, mucoadhesivity properties. Bio-flexy films were prepared by solvent casting technique. Formulations containing different ratios of nanosized Tiagabine: Rosa polyantha biopolymer (1:0.5, 1:1; 1:3, 1:5, 1:6, 1:10) (FRT1-FRT6) were prepared and compared with nanosized Tiagabine loaded Sodium CMC standard flexy films (FET1-FET6). The percentage yield of Rosa polyantha biopolymer was found to be 2.24±0.01%. Evaluation parameters for formulations revealed Thickness of nanosized Tiagabine loaded bio-flexy films containing Rosa polyantha biopolymer (FRT1-FRT6): 0.027 mm±0.005 to 0.039±0.004 mm, Folding Endurance: 83-130, Surface pH: 7.00±0.04 to 7.00±0.01, Weight Uniformity: 0.008±0.05 to 0.044±0.03, Drug Content Uniformity: 85.6%±0.48 to 94.8%±0.37, Swelling Percentage: 66%±0.2 to 75%±0.1, Percentage Moisture Uptake (PTU): 2.5%±0.14 to 3.8%±0.10. Mucoadhesivity: 90-1440 mins, Mucoretentivity: 110-240 mins. Drug release pattern for formulations FRT1-FRT6 containing Rosa polyantha biopolymer based on the T50% and T80% was found to be FRT5 (1:6) > FRT4 (1:5) > FRT6 (1:10) > FRT1 (1:0.5)> FRT3 (1:3) > FRT2 (1:1). Based on all above mentioned evaluation parameters, FRT5 (containing Tiagabine: Rosa polyantha biopolymer (1:6)) bio-flexy film having R2= 0.9295, Higuchi Matrix as best fit model, follows Fickian Diffusion (Higuchi Matrix) release mechanism, T50%: 7hrs., T80%: 30 hrs. using BITS Software 1.12 was found to be Best formulation. 1 - 327 349 - - Sugandha Varshney Faculty of Pharmacy, Dit University, Dehradun, 248001, India Faculty of Pharmacy, Dit University, Dehradun, India sugandhavarshney19.12.86@gmail.com - - Nookala Venkala Satheesh Madhav Faculty of Pharmacy, Dit University, Dehradun, 248001, India Faculty of Pharmacy, Dit University, Dehradun, India satheesh_madhav@yahoo.ocm Bio-flexy films nanosized Tiagabine Rosa polyantha biopolymer Soft palatal delivery [1]. Danzer S. Neuron Journal, 2012, 75:739##[2]. Pulman J., Marson A.G., Hutton J.L. Europe PMC., 2014, 2:1##[3]. Shakya P., Madhav N.V.S., Shakya A.K. J. Control Release., 2011, 151:2##[4]. Kalviainen R. Epilepsia Journal, 2001, 42:45##[5]. Sharma Y., Hegde R.V., Venugopal C.K. International Journal of Research in Ayurveda and Pharmacy, 2011, 2:375##[6]. Karki S., Kim H., JeongNa S., Shin D., Jo K., Lee J. Asian Journal of Pharmaceutical Sciences.2011, 11:559##[7]. Satheesh Madhav N.V., Semwal R. Expert Opinion on Drug Delivery 2012, 9:629##[8]. Nilani P., Duraisamy B., Dhamodaran P., Elango K. Journal of Pharmaceutical Sciences and Research, 2010, 2:178##[9]. Patil S., Asema S.U.K., Mirza S., International Journal of Chemical Sciences. 2008, 6:413##[10]. Satheesh Madhav N.V., Singh K. Journal of Applied Pharmaceutical Research, 2017, 5:21##[11]. Patil S, Asema S.U.K. International Journal of Chemical Sciences, 2008,6:413##[12]. Madhav N.V.S., Tangri P. International Journal of Therapeutic Applications, 2012, 4:10##[13]. Satheesh Madhav N V, Varshney S. Journal of Molecular Medicine and Clinical Applications. Sci. Forschen, 2017, 1.1:1##
Conductometric study on the benzoic acid in water+methanol systems at different solution temperatures 2 2 This research article explores the results of the ion-solvent interaction with the aid of electrical conductivity law of benzoic acid in triple distilled water and different amounts of methanol at 293 K, 303 K, 313 K, and 323 K. The specific conductance obtained from the conductivity meter was examined using Shedlovsky and Kraus-Bray plots. The limiting molar conductance ) values obtained using the Shedlovsky and Kraus-Bray models. values obtained from theShedlovsky and Kraus-Bray models were found to be in good agreement with each other. The association constant (Ka) values obtained from the Shedlovsky plots, whereas dissociation constant (Kd) values obtained from the Kraus-Bray plots. The thermodynamic parameters such as activation energy (Ea), free energy of adsorption (∆Ga), adsorption enthalpy (∆Ha) and adsorption entropy (∆Sa) values are evaluated in order to study the nature of ion-solvent interaction. The negative ∆Ga values showed the spontaneous ion-pair association process 1 - 350 355 - - Narasimha Raghavendra Department of Chemistry, K.L.E. society's P. C. Jabin Science College (Autonomous) Vidyanagar, Hubballi-580031 Department of Chemistry, K.L.E. society's India rcbhat3@gmail.com Electrical conductivity Shedlovsky model Association constant Adsorption free energy Adsorption enthalpy [1]. Gomaa E.A., Al-Jahdali B.A.M. Sci. Technol., 2012, 2:66##[2]. Covington A.K., Dickinson T. Physical Chemistry of Organic Solvent Systems, Plenum Press, London, 1973; p 1-22##[3]. Fuoss R.M., Accascina F. Electrolytic conductance, Interscience, New York, 1959##[4]. Robinson RA, Stokes RH. Electroyte Solutions, Wiley, New York, 1968##[5]. EL-Khouly A.A., Gomaa E.A., EL-Ashry S. second conf. in Basic science, Assiut University, Assiut, 2000##[6]. Shivakumar H.R., Siju N.Asian J. Chem., 2010, 22:5493##[7]. Bockris J.O.M., Reddy A.K.N. Modern Electrochemistry 1, Plenum Press: New York, 1970; p 1-34##[8]. Esam A.G., Radwa T.R. Asian J. Nano. Mat., 2018,1:81##[9]. Nacollas G.H.In: Interactions in Electrolyte Solutions, 1st edn. Elsevier, Amsterdam, 1966##[10]. Stokes R.H., Mills R.In: Viscosity of Electrolytes and Related Properties, 1st edn. Pergamon Press, London, 1965##
Novel approaches of treatment via ocusert drug delivery 2 2 Ocuserts or ophthalmic inserts are “Sterile preparation in the form of solid or semisolid, whose size and shape are specially designed to be applied to the eyes”. The most frequently used dosage forms (ophthalmic solutions and suspensions) are compromised in their effectiveness by several limitations, leading to poor ocular bioavailability. By utilization of the principles of the controlled release as embodied by ocular inserts offers an irritable approach to the problem of prolonging pre-corneal drug residence times. The controlled ocular drug delivery systems increased the efficiency of the drug by enhancing absorption increasing contact time of drug and by reducing drug wastage to the absorption site. Ocuserts were prepared using the solvent casting method. The article discusses about the various structure of the eye, its anatomy with an explanatory diagram. Also, various mechanisms of drug diffusion into an eye with special attention to biological/clinical performances, and potential applications and developments were discussed 1 - 356 366 - - Deepika Sharma Faculty of Pharmacy, DIT University, Makkawala P.O. Bhagwantpur, Dehradun, India, 248009 Faculty of Pharmacy, DIT University, Makkawala India ocimum05@gmail.com - - Shubham Tyagi Faculty of Pharmacy, DIT University, Makkawala P.O. Bhagwantpur, Dehradun, India, 248009 Faculty of Pharmacy, DIT University, Makkawala India shubhamtyagi@live.com - - Bhavna Kumar Faculty of Pharmacy, DIT University, Makkawala P.O. Bhagwantpur, Dehradun, India, 248009 Faculty of Pharmacy, DIT University, Makkawala India bhavnano@gmail.com Ocuserts Eye Ocular inserts Sterile [1]. Chrai S.S., Makoid M.C., Erikson S.P., Robinson J.R. J. Pharm. Sci., 1974, 63:333##[2]. Zaki I., Fitzgerald P., Hardy J.G., Wilson C.G. J. Pharm. Pharmacol, 1986, 38:463##[3]. Jain M.K., Manque S.A., Deshpande S.G. Controller and Novel Drug Delivery. CBS publication, 2005; p. 82##[4]. Sarath C.S., Harsha P., Saraswathi R. Der Pharmacia Letter, 2010, 2:261##[5]. Agarwal R., Iezhitsa I., Agarwal P. Drug Deliv, 2016, 23:1075##[6]. Del Monte D.W., Kim T. J Cataract Refract Surg., 2011, 37:588##[7]. Baylor D.A., Lamb T.D., Yau K.W. J. Physiol., 1979, 88:613
##[8]. Dave V., Pareek A., Yadav S. World Journal of Pharmacy and Pharmaceutical Sciences, 2012, 1: 859##[9]. Willoughby C.E., Ponzin D., Ferrari S. Clin Exp Ophthalmol, 2010, 38:2##[10]. Huang H.S., Schoenwald R.D., Lac J.L. J. Pharm. Sci., 1983, 72:1272##[11]. Ahmed I., Gokhale R.D., Shah M.V. J. Pharm. Sci., 1987, 76:583##[12]. Eller M.G., Schoenwald R.D., Dixson J.A. J. Pharm. Sci., 1985, 74:155##[13]. Tangri P., Khurana S. International Journal of Research in Pharmaceutics and Biomedical Science, 2011, 2:1547##[14]. Karthikeyan D., Bhowmick M., Pandey V. Asian J. Pharm., 2008, 2:192##[15]. Kaul S., Kumar G., Kothiyal P. International Journal of Pharmaceutical Sciences and Research, 2012, 3:1907##[16]. Kumari A., Sharma P., Garg V., Garg G. J Adv Pharm Technol Res., 2010,1:291##[17]. Ebtsam M.A., Soha M.K. International Journal of Pharmaceutical Sciences and Research, 2017, 8:915##[18]. Shukr M. Arch Pharm Res., 2014, 37:882##[19]. Ahad A.H., Sreeramulu J.,Padmaja S.B.ISRN Pharm, 2011:237501##[20]. Upadhyaya N., Patidar A., Agrawal S. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2011, 2:411##[21]. Sarath C.C., Shirwaikar A., Devi S.A. International Journal of PharmTech Research, 2010, 2:246 ##[22]. Sankar V., Chandrasekharan A.K., Durga S. Acta Pharm Sci., 2006, 48:5##[23]. Baeyens V., Kaltsatos V., Boisrame B.J. Control. Release, 1998, 52:215 ##[24]. Thakur R., Swami G. Journal of Drug Delivery & Therapeutics, 2012, 2:18##[25]. Salminen L., Urtti A., Kujari H. et al. Greafe’s Arch Clin Exp Ophthalmol, 1983, 221:96##[26]. Saettone M.F., Chetoni P., Torraca M.T. Int. J. Pharm., 1989, 51:203##[27]. Urtti A., Salminen L., Miinalainen O. Int. J. Pharm., 1985, 23:147##[28]. Sendelbeck L., Moore D., Urqhart J. Am. J. Ophthalmol 1975, 80:274##[29]. Yamamoto Y., Kaga Y., Yoshikawa T., Moribe A. US Patent, 1992; 5145884##[30]. Bloomfield S.E., Miyata T., Dunn M.W. Arch Ophthalmol, 1973, 96:885##[31]. Pavan-Langston D., Langston R.H., Geary P.A. Arch Ophthalmol ,1975, 93:1349##[32]. Gevariya H., Dharamsi A., Girhepunje K. Pal R. Asian Journal of Pharmaceutics, 2009, 3:314##