ORIGINAL_ARTICLEBiogenic synthesis of Palladium nanoparticles mediated by Artemisia abrotanum aqueous extract and its catalytic evaluation for Suzuki coupling reactionsA simple and biological method for the fabrication of palladium nanoparticles (Pd NPs) was developed, applying the non-toxic and sustainable natural extract from Artemisia abrotanum as the reducing, stabilizing and capping agent. UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS), were utilized to classify the synthesized Pd NPs@Artemisia catalyst. The Pd NPs@Artemisia demonstrated excellent behavior as a reusable nanocatalyst in Suzuki-Miyaura cross-coupling reactions at room temperature. The nanocatalyst was recycled 7 times without any significant deduction in catalytic activity.https://www.ajnanomat.com/article_61699_047a545a03641e59ba1a73c5ad4b9301.pdf2018-07-01T11:23:202020-07-11T11:23:2010411410.26655/ajnanomat.2018.6.1Pd nanoparticlesArtemisia abrotanumGreen synthesisSuzukiC-C couplingBond formationCatalystFatemehAhmaditrue1Department of Chemistry, Sciences and Research Branch, Islamic Azad University,
Tehran, IranDepartment of Chemistry, Sciences and Research Branch, Islamic Azad University,
Tehran, IranDepartment of Chemistry, Sciences and Research Branch, Islamic Azad University,
Tehran, IranAUTHORMalakHekmatitrue2Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran, IranDepartment of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran, IranDepartment of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran, IranAUTHORMohammadYousefi[email protected]true3Department of Chemistry, Sciences and Research Branch, Islamic Azad University,
Tehran, Iran.Department of Chemistry, Sciences and Research Branch, Islamic Azad University,
Tehran, Iran.Department of Chemistry, Sciences and Research Branch, Islamic Azad University,
Tehran, Iran.AUTHORHojatVeisi[email protected]true4Department of Chemistry, Payame Noor University, PO BOX 19395-4697 Tehran, Iran.Department of Chemistry, Payame Noor University, PO BOX 19395-4697 Tehran, Iran.Department of Chemistry, Payame Noor University, PO BOX 19395-4697 Tehran, Iran.LEAD_AUTHOR[1] Iravani S, (2011) Green Chemistry 13: 2638-26501[2] Zhu, H, Du, M, Zou, M, Xu, C, & Fu, Y (2012) Dalton Transactions 41:10465-104712[3] Raveendran P, Fu J, &Wallen SL (2003) Journal of the American Chemical Society 125: 13940-13941.3[4] Kalidindi SB, &Jagirdar BR, (2012). ChemSusChem, 5: 65-754[5] Varma RS, (2012) Current Opinion in Chemical Engineering 1: 123-128.5[6] Nakhjavan B, Tahir MN, Natalio F, Gao H, Schneider K, Schladt T &Sönnichsen C (2011) Journal of Materials Chemistry 21: 8605-86116 [7] Tahir MN, Natalio F, Cambaz MA, Panthöfer M, Branscheid R, Kolb U &Tremel W (2013) Nanoscale 5: 9944-99497[8] Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J &Gardea-Torresdey JL (2011) Journal of hazardous materials 186: 1-158[9] Byrappa K, Ohara S &Adschiri T (2008) Advanced Drug Delivery Reviews 60: 299-3279[10] Campelo JM, Luna D, Luque R, Marinas JM & Romero AA (2009) ChemSusChem 2: 18-4510[11] Otari SV, Patil RM, Waghmare SR, Ghosh SJ &Pawar SH (2013) Dalton Transactions 42: 9966-997511[12] Hennebel T, De Corte S, Verstraete W & Boon N (2012) Current opinion in biotechnology 23:555-56112[13] Tahir MN, Natalio F, Therese HA, Yella A, Metz N, Shah MR & Müller WE (2009) Advanced Functional Materials 19: 285-29113 [14] Tahir MN, Théato P, Müller WE, Schröder H C, Borejko A, Faiß S &Tremel W (2005) Chemical Communications 44: 5533-553514[15] Akhtar M S, Panwar J & Yun YS (2013) ACS Sustainable Chemistry & Engineering, 1: 591-60215[16] (a) Mittal A K, Chisti Y & Banerjee UC (2013) Biotechnology advances 31:346-356;16 (b) Veisi H, Hemmati S, Shirvani H &Veisi H (2016) Applied Organometallic Chemistry 30: 387-39117[17] Gan PP, & Li, SFY (2012) Reviews in Environmental Science and Bio/Technology 11: 169-20618[18] Coccia F, Tonucci L, Bosco D, Bressan M & d'Alessandro N (2012) Green Chemistry 14: 1073-107819[19] Cheng F, Betts JW, Kelly SM, Schaller J &Heinze T (2013) Green Chemistry 15: 989-99820[20] Kumar KM, Mandal B K &Tammina SK (2013) RSC Advances, 3: 4033-403921[21] Zhang G, Du M, Li Q, Li X, Huang J, Jiang X, & Sun D (2013) RSC Advances 3: 1878-188422[22] Lee HJ, Song JY & Kim BS (2013) Journal of Chemical Technology and Biotechnology 88: 1971-197723[23] Dauthal P &Mukhopadhyay M (2012) Industrial & Engineering Chemistry Research 51: 13014-1302024[24] a) Li W, Zhang H, Gao Y, Jiu J, Li CF, Chen C & Nagao S (2017) Journal of Materials Chemistry C 5: 1155-116425b) He Y, Piper D M, Gu M, Travis J J, George S M, Lee S H & Zhang J G (2014) Acs Nano 8: 11816-1182326c) Shen Z, Han G, Liu C, Wang X & Sun R (2016) Journal of Alloys and Compounds 686: 82-8927 [25] Arunachalam KD, Annamalai SK & Hari S (2013) International journal of nanomedicine 8: 130728 [26] Zaera F (2013) Chemical Society Reviews 42: 2746-276229[27] Fortman GC & Nolan SP (2011) Chemical Society Reviews 40: 5151-516930[28] (a) Hickman AJ & Sanford MS (2012) Nature 484: 17731 (b) Ghorbani-Vaghei R, Hemmati S, Hashemi, M &Veisi H (2015) ComptesRendusChimie 18: 636-64332 (c) Pirhayati M, Veisi H, &Kakanejadifard A (2016) RSC ADVANCES 6:27252-2725933 (d) Khakiani B A, Pourshamsian K &Veisi H (2015) Applied Organometallic Chemistry 5: 259-26534[29] Zhu M, Wang Y, Wang C, Li W &Diao G (2013) Catalysis Science & Technology, 3: 952-96135[30] Lu Y M, Zhu HZ, Li W G, Hu B & Yu SH (2013) Journal of Materials Chemistry A, 1: 3783-378836[31] Santra S, Ranjan P, Bera P, Ghosh P & Mandal, SK (2012) RSC Advances, 2: 7523-753337 [32] Deng S, Lei J, Huang Y, Yao X, Ding L &Ju, H (2012) Chemical Communications 48: 9159-916138[33] Itoh H, Maeda H, Yamada S & Hori Y (2012) ChemCatChem, 4: 1737-174039[34] Khan M, Khan M, Kuniyil M, Adil SF, Al-Warthan A, Alkhathlan HZ & Siddiqui M R H (2014) Dalton Transactions 43: 9026-903140[35] (a) Veisi H, Masti R, Kordestani D, Safaei M & Sahin O (2014) Journal of Molecular Catalysis A: Chemical 385:61-6741 (b) Pérez-Lorenzo M (2012) The Journal of Physical Chemistry Letters 3: 167-17442 (c) Veisi H, Pirhayati M, &Kakanejadifard A (2017) Tetrahedron Letters 58: 4269-427643 (d) Veisi H, Pirhayati M &Kakanejadifard A (2017) Tetrahedron Letters 58: 4269-427644[36] Liang L, Diallo AK, Salmon L, Ruiz J &Astruc D (2012) European Journal of Inorganic Chemistry 2012: 2950-295845[37] Liang L, Diallo AK, Salmon L, Ruiz J &Astruc D (2012) European Journal of Inorganic Chemistry 2012: 2950-295846[38] Gavia DJ & Shon YS (2012) effects on Langmuir 28: 14502-1450847[39] Joerg G, Thomas B, Christof J &Mukesh M (2000) Medical Economics Company Montvale/ New Jersey 319.48[40] (a) Veisi H, Faraji AR, Hemmati,] S & Gil A (2015) Applied Organometallic Chemistry 29: 517-52349 (b) Veisi H, Ghorbani‐Vaghei R, Hemmati S, Aliani MH &Ozturk T (2015) Applied Organometallic Chemistry 29: 26-3250[41] (a) Lebaschi S, Hekmati M &Veisi H (2017) Journal of colloid and interface science 485:223-23151 (b) Veisi H, Rashtiani A, &Barjasteh V (2016) Applied Organometallic Chemistry 30: 231-23552 (c) Veisi H, Hemmati S, Shirvani H &Veisi H (2016) Applied Organometallic Chemistry 30: 387-39153[42] Aromal SA, Vidhu VK & Philip D (2012) SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy 85: 99-10454[43] Cumberland SL &Strouse GF (2002) Langmuir 18: 269-27655[44] Sheny DS, Mathew J & Philip D (2011)SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy 79: 254-26256[45] Philip D &Unni C (2011) Physica E: Low-dimensional Systems and Nanostructures 43:1318-132257[46] Veisi H, Ghorbani‐Vaghei R, Hemmati S, Aliani MH &Ozturk T (2015) Applied Organometallic Chemistry 29: 26-32.58[47] Veisi H, Khazaei A, Safaei M &Kordestani D (2014) Journal of Molecular Catalysis A: Chemical 382:106-11359[48] a) Veisi H, Najafi S &Hemmati S (2018) International journal of biological macromolecules 113: 286-19460 (b) Bonyasi F, Hekmati M, &Veisi H (2017) Journal of colloid and interface science 496: 177-18761 (c) Pirhayati M, Veisi H &Kakanejadifard A (2016) RSC ADVANCES 6: 27252-2725962 (d) Veisi H, Hemmati S, Shirvani H &Veisi H (2016) Applied Organometallic Chemistry 30: 387-39163(e) Veisi H, Taheri S &Hemmati S (2016) Green Chemistry 18: 6337-6348.64ORIGINAL_ARTICLEEffect of Aloe vera on synthesis of nano Tin (iv) oxideTin (IV) oxide (SnO2) is a compound semiconductor which has been used for gas sensing and fluoride removal. SnO2 was synthesized with tin chloride as a precursor by sol gel method. Aloe vera was added during the preparation of SnO2 to study its effect on the nanosize, composition and morphology. The prepared nanopowders are characterized by XRD, SEM and FTIR to analyze the crystallite size, morphology, functional groups and absorption bands. FTIR reveal the change in functional group and shift in absorbance due to presence of Aloe vera. XRD analysis with Williamson Hall plot confirms the nanosize which was in accordance with the SEM results. PL spectra were recorded to find the effect of band gap and intensity on SnO2 due to aloe vera.https://www.ajnanomat.com/article_61809_5de55a57b6d1d4fe0d220697bd2affed.pdf2018-07-01T11:23:202020-07-11T11:23:2011512110.26655/ajnanomat.2018.6.2SnO2Aloe veraSol gelFTIRVeeriahVeeraganesh[email protected]true1Department of Physics, Thiagarajar College of Engineering, Madurai-625015.Department of Physics, Thiagarajar College of Engineering, Madurai-625015.Department of Physics, Thiagarajar College of Engineering, Madurai-625015.AUTHORAlagappanSubramaniyan[email protected]true2Departments of Mechanical Engineering, Thiagarajar College of Engineering, Madurai-625015Departments of Mechanical Engineering, Thiagarajar College of Engineering, Madurai-625015Departments of Mechanical Engineering, Thiagarajar College of Engineering, Madurai-625015LEAD_AUTHORThambuSornakumar[email protected]true3Department of Physics, Thiagarajar College of Engineering, Madurai-625015.Department of Physics, Thiagarajar College of Engineering, Madurai-625015.Department of Physics, Thiagarajar College of Engineering, Madurai-625015.AUTHORBatzill, M., & Diebold, U. (2005). Prog. Surf. Sci., 79: 47–154.1Anuradha, S., & Rajanna, K. (2008). Int. J. Smart Sens. Intell. Syst., 1: 498–511.2Patel, M. K., Singh, J., Singh, M. K., Agrawal, V. V., Ansari, S. G., & Malhotra, B. D. (2013). J. Nanosci. Nanotechnol., 13: 1671–1678.3Jana, a K. (2000). J. Photochem. Photobiol. a-Chemistry, 132: 1–17.4Buzea, C., Pacheco, I. I., & Robbie, K. 2007. Biointerphases, 2: MR17-MR71.5S. T. Chang, I. C. Leu, M. H. Hon (2002). Electrochem. Solid-State Lett, 5(8), 71-74.6Nowak, A. P., Lisowska-Oleksiak, A., Siuzdak, K., Sawczak, M., Gazda, M., Karczewski, J., & Trykowski, G. (2015). RSC Adv., 5: 84321–84327.7 Woo, D.-C., Koo, C.-Y., Ma, H.-C., & Lee, H.-Y. (2012). Trans. Electr. Electron. Mater., 13: 241–244.8 Maestre, D., Cremades, A., & Piqueras, J. 2004. Microelectron. (2004). 24th Int. Conf., 2: 433–436 vol.2.9Dimitriev, Y., Ivanova, Y., & Iordanova, R. (2008). J. Univ. Chem. Technol. Metall., 43: 181–192.10Holmberg, K. (2001). Curr. Opin. Colloid Interface Sci., 6: 148–159.11Ibrahim, S., Fadhil, A. M. A., & Al- Ani, N. K. (2014). J. Al-Nahrain Univ. Sci., 17: 165–171.12Surjushe, A., Vasani, R., & Saple, D. G. (2008). Indian J. Dermatol., 53: 163–6.13Chen, W., Ghosh, D., & Chen, S. (2008). J. Mater. Sci., 43: 5291–5299.14ORIGINAL_ARTICLESimulation and Characterization of PIN Photodiode for Photonic ApplicationsResearch conducted on silicon based photodetector technology has recently shown rapidly growing momentum to develop the robust silicon based detectors for photonic applications. The thrust is to manufacture low cost and high efficiency detectors with CMOS process compatibility. In this study, a new design and characterization of PIN photodiode is envisaged. The simulation tool, Silvaco TCAD (and its variants), was used to design and simulate the processes of the device. Electrical and optical measurements such as I-V characteristics (dark current), and internal/external quantum efficiencies were analysed to evaluate the designed and processed device structure for its potential applications in photonics and other detection mechanisms.https://www.ajnanomat.com/article_63013_7c977ea4ae425dba5814b3bedaa804c3.pdf2018-07-01T11:23:202020-07-11T11:23:2012213410.26655/ajnanomat.2018.6.3PIN photodiodeCMOSI-V characteristicsQuantum efficiencyWaqasAhmad[email protected]true1SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. ChinaSZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. ChinaSZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. ChinaLEAD_AUTHORMuhammad UmairAli[email protected]true2Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. ChinaDepartment of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. ChinaDepartment of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. ChinaAUTHORVijayLaxmi[email protected]true3THz Technical Research Center of Shenzhen University, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, P.R. ChinaTHz Technical Research Center of Shenzhen University, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, P.R. ChinaTHz Technical Research Center of Shenzhen University, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, P.R. ChinaAUTHORAhmed ShujaSyed[email protected]true4Centre for Advanced Electronics and Photovoltaic Engineering, International Islamic University, Islamabad 44000, PakistanCentre for Advanced Electronics and Photovoltaic Engineering, International Islamic University, Islamabad 44000, PakistanCentre for Advanced Electronics and Photovoltaic Engineering, International Islamic University, Islamabad 44000, PakistanAUTHOR1. Bank SR, Campbell JC, Maddox SJ, Ren M, Rockwell A-K, Woodson ME, March SD (2018) IEEE J. Sel. Top. Quant. Electron 24: 1-7.12. Bisogni MG, Morrocchi M (2016) Nucl. Instr. Meth. Phys. Res A 809: 140–148.23. Palai G (2017) Optik 133: 108–113.34. Menon PS, Shaari S (2004) The 4th Annual Seminar of National Science Fellowship, Malaysia.45. Yotter RA, Wilson DM (2003) IEEE Sens. J 3: 288-303.56. Alexandre A, Pinna A, Granado B, Garda P (2004) IEEE ICIT’04 1: 142-147.67. Andjelkov MS, Risti GS (2015) Radiat. Meas 75: 29-38.78. Shuhaimi NI, Mohamad M, Jubadi WM, Tugiman R, Zinal N, Zin RM (2010) ICSE 12-14.89. Abiri E, Salehi MR, Kohan S, Mirzazadeh M (2010) PACCS 1: 60-62.910. Jubudi WM, Norafzaniza S, Noor M (2010) SIEA 428-432.1011. Vergilio AW, Pekarik JJ, Jain V (2014) BCTM 207-210.1112. Zainudin Z, Ismail AF, Hasbullah NF (2014) Computer and Communications Engineering 268-268.1213. Mohammed WF, Tikriti MN (2014) SSD1-5.1314. Conradi J (1981) Proc. SPIE Int. Soc. Opt Eng 266: 49-55.1415. Razeghi M (2017) Vacuum 146: 308-328.1516. Athena User Manual (2016).1617. Device Simulation Framework https://www.silvaco.com/products/device_simulation/atlas.html. Accessed 09 April 2018.1718. Atlas User Manual (2006).1819. Fallahpour AH, Kienitz S, Lugli P (2017) IEEE Trans. Electron Devices 64: 2649-2654.1920. Qiu X (2018) Adv. Optical Mater 6: 1700638.2021. Yi X, Huang Z, Lin, Li C, Chen S, Huang W, Li J, Wang J (2017) J. Semicond 38: 042001-5.2122. Bartolomeo AD, Luongo G, Giubileo F, Funicello N, Niu G, Schroeder T, Lisker M, Lupin G (2017) 2D Mater 4: 025075.2223. Bie Y-Q, Grosso G, Heuck M, Furchi MM, Cao Y, Zheng J, Bunandar D, Navarro-Moratalla E, Zhou L, Efetov DK, Taniguchi T, Watanabe K, Kong J, Englund D, Jarillo-Herrero P (2017) Nat. Nano 12: 1124-1129.2324. Su Z, Hosseini ES, Timurdogan E, Sun J, Moresco M, Leake G, Adam TN, Coolbaugh DD, Watts MR (2017) Opt. Lett 42: 2878-2881.24ORIGINAL_ARTICLEOne Pot synthesis of 2-substituted benzothiazoles catalyzed by Bi2O3 nanoparticlesA convenient and efficient synthesis of 2-substituted benzothiazole derivatives are carried out by the one-pot reaction of 2-aminothiophenol with various aromatic aldehydes in using Bi2O3 nanoparticles as a catalyst at 60°C. The structure of the synthesized compounds have been confirmed on the basis of by FT-IR, H1 NMR, C13 NMR, Mass spectrometry and elemental analysis. This protocol afforded advantages i.e. purification of products by non-chromatographic method. Bi2O3 nanoparticles is cheap, readily available, versatile, environment friendly and recyclable. The reaction has been carried out in ethanol, thus eliminating hazardous organic solvents.https://www.ajnanomat.com/article_63467_4660e4b372fdf6cdd03d34509b0dbbf6.pdf2018-07-01T11:23:202020-07-11T11:23:2013514210.26655/ajnanomat.2018.6.4Benzothiazole derivativesSynthesisCatalyzed and Nano-particlesJyotiSharma[email protected]true1School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011LEAD_AUTHORRaviBansal[email protected]true2School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011AUTHORPradeepSoni[email protected]true3School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011AUTHORSwatiSingh[email protected]true4School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011AUTHORAnandHalve[email protected]true5School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011AUTHOR 1. H. Razavi, S. K. Palaninathan, E. T. Powers, R. L. Wiseman, H. E. Purkey, N. N. Mohamedmohaideen, S. Deechongkit, K. P. Chiang, M. T. A. Dendle, J. C. Sacchettini and J. W. Kelly (2003) Angew. Chem. Int. Ed. 42: 2758-61.12. P.Y. Coqueron, C. Didier and M.A. Ciufolini (2003) Angew. Chem. Int. Ed. 42: 1411-1414.23. T.E. Smith, W.H. Kuo, E.P. Balskus, V.D. Bock, J.L. Roizen, A.B. Theberge, K.A. Carroll, T. Kurihara and J.D. Wessler (2008) J. Org. Chem. 73: 142-150.34. R. Sompalle and S.M. Roopan (2014) Chem. Sci. Rev. Lett. 2: 408-414; (b) P.S. Yadav, D. Devprakash and G.P. Senthilkumar (2011) Int. J. Pharm. Sci. Drug Res.3: 1-7.45. W. Huang and G.F. Yang (2006) Bioorg. Med. Chem. 14: 8280-8285; (b) C. Sheng, X. Che, W. Wang, S. Wang, Y. Cao, J. Yao, Z. Miao and W. Zhang (2011) Eur. J. Med.Chem. 46: 1706-1712.56. S. Bondock, W. Fadaly and M.A. Metwally (2009) Eur. J. Med. Chem. 44: 4813-4818.67. S. Saeed, N. Rashid, P.G. Jones, M. Ali and R. Hussain (2010) Eur. J. Med. Chem. 45: 1323-1331.78. I. Hutchinson, S.A. Jennings, B.R. Vishnuvajjala, A.D. Westwell and M.F.G. Stevens (2002) J. Med. Chem. 45: 744-747.89. S. Aiello, G. Wells, E.L. Stone, H. Kadri, R. Bazzi, D.R. Bell, M.F.G. Stevens, C.S. Matthews and T.D. Bradshaw (2008) J. Med. Chem. 51: 5135-5239.9 10. V.R. Solomon, C. Hu and H. Lee (2009) Bioorg. Med. Chem. 17: 7585-7592.1011. L. Racane, M. Kralj, L. Suman, R. Stojkovic´, V. Tralic´-Kulenovic´ and G. Karminski-Zamola (2010) Bioorg. Med. Chem. 18: 1038-1044.1112. S. Tzanopoulou, M. Sagnou, M. Paravatou-Petsotas, E. Gourni, G. Loudos, S. Xanthopoulos, D. Lafkas, H. Kiaris, A. Varvarigou, I.C. Pirmettis, M. Papadopoulos and M. Pelecanou (2010) J. Med. Chem. 53: 4633-4641.1213. V. G. Ugale, H. M. Patel, S. G. Wadodkar, S. B. Bari, A. A. Shirkhedkar, S. J. Surana (2012) Eur. J. Med. Chem. 53: 107-113.1314. A. Zablotskaya, I. Segal, A. Geronikaki, T. Eremkina, S. Belyakov, M. Petrova, I. Shestakova, L. Zvejniecea and V. Nikolajeva (2013) Eur. J. Med. Chem. 70: 846-856.1415. G. Mariappan, P. Prabhat, L. Sutharson, J. Banerjee, U. Patangia and S. Nath (2012) J. Korean Chem. Soc. 56: 251-256.1516. S. R. Nagarajan, G. A. De Crescenzo, D. P. Getman, H. F. Lu, J. A. Sikorski, J. L. Walker, J. J. McDonald, K. A. Houseman, G. P. Kocan, N. Kishore, P. P. Mehta, C. L. Funkes-Shippy and L. Blystone (2003) Bioorg. Med. Chem. 11: 4769-4777.1617. P. Patel, J. Pillai, N. Darji and B. Patel (2012) Int. J. Drug Res. Technol. 2: 170-176.17 18. S. Shafi, M.M. Alam, N. Mulakayala, C. Mulakayala, G. Vanaja, A.M. Kalle, R. Pallu and M.S. Alam (2012) Eur. J. Med. Chem. 49: 324-333.1819. S.L. Johnson, L.H. Chen, E. Barile, A. Emdadi, M. Sabet, H. Yuan, J. Wei, D. Guiney and M. Pellecchia (2009) Bioorg. Med. Chem. 17: 3352-3368.1920. K.M. Khan, F. Rahim, S.A. Halim, M. Taha, M. Khan, S. Perveen, M. Zaheer-ul-Haq, M.A. Mesaik and M.I. Choudhary (2011) Bioorg. Med. Chem. 19: 4286-4294.2021. L. Huang, T. Su, W. Shan, Z. Luo, Y. Sun, F. He and X. Li (2012) Bioorg. Med. Chem. 20: 3038-3048.2122. Y.H. Cho, C.Y. Lee, D.C. Ha and C.H. Cheon (2012) Adv. Synth. Catal. 354: 2992-2996.2223. N. Park, Y. Heo, M.R. Kumar, Y. Kim and S. Lee (2012) Eur. J. Org. Chem. 2012: 1984-1993.2324. Y. Liao, H. Qi, S. Chen, Pengcheng Jiang, Wang Zhou, and Guo-Jun Deng (2012) Org. Lett. 14: 6004-6007.2425. L.Y. Fan, Y.H. Shang, X.X. Li and W.J. Hua (2015) Chin. Chem. Lett. 26: 77-80.2526. M. Farahi, B. Karami and M. Azari (2013) Comptes Rendus Chimie. 16: 1029-1034.2627. F. M. Moghaddam, G. R. Bardajee, H. Ismaili and S.M.D. Taimoory (2006) Synth. commun. 36: 2543-2548.2728. Y. Raidi, R. Mamouni, R. Azzalou, M. E. Haddad, S. Routier, G. Guillaumet and S. Lazar (2011) Tetrahedron Lett. 52: 3492-3495.2829. X. Wen, J.E. Bakali, R.D. Poulain, and B. Deprez (2012) Tetrahedron Lett. 53: 2440-2443.2930. Y-X Chen, L-F Qian, W. Zhang, and B. Han (2008) Angew. Chem. Int. Ed. 47: 9330-9333.3031. Z. Yang, X. Chen, S. Wang, J. Liu, K. Xie, A. Wang, Z. Tan (2012) J. Org. Chem. 77: 7086-7091.3132. G. H. Sung, I.H. Lee, B.R. Kim, D. S. Shin, J.J. Kim, S.G. Lee and Y.J. Yoon (2013) Tetrahedron 69: 3530-3535.3233. K. Bahrami, M.M. Khodaei and F. Naali (2008) J. Org. Chem. 73: 6835-6837.3334. H. Y. Guo, J.C. Li and Y.L. Shang (2009) Chin. Chem. Lett. 20: 1408-1410.3435. C. Praveen, A. Nandakumar, P. Dheenkumar, D. Muralidharan and P. Perumal (2012) J. Chem. Sci. 124: 609-624.3536. T.G. Deligeorgiev, S. Kaloyanova, A. Vasilev and J.J. Vaquero (2010) J. Phosphorus, Sulfur Silicon Relat. Elem.185: 2292-2302.3637. M. Kodomari, Y. Tamaru and T. Aoyama (2004) Synth. Commun.34: 3029-3036.3738. S. Banerjee, S. Payra and A. Saha (2014) Tetrahedron Lett. 55: 5515-5520.3839. A. Teimouri, A.N. Chermahini, H. Salavati and L. Ghorbanian (2013) J. mol. Catal. A: chem. 373: 38-45.3940. S. M. Inamdar, V. K. More and S. K. Mandal (2013) Tetrahedron Lett. 54: 579-583.40ORIGINAL_ARTICLEStudy of molybdenum effect on synthesis behavior of nanocrystalline NiAl intermetallic during mechanical alloyingThe mechanical alloying (MA) procedure was used to synthesize the Ni50Al50 and Ni50Al45Mo5 nanocrystalline intermetallic compound using the pure Ni, Al and Mo elemental powders under an argon atmosphere for different times (8, 16, 48, 80 and 128 h) in a planetary ball mill with hardened steel balls (12 balls-1cm and 4 balls-2cm in diameter). The mechanical alloying was carried out in the attendance of various Mo contents as a micro-alloying element for various milling times. Microstructural characterization and structural changes of powder particles during mechanical alloying were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Outcomes confirmed that the synthesis behavior of NiAl intermetallic depends on the milling time and Mo content. The results show that after than 80h milling, the intermetallic phase is produced after opening the vial lid. X-ray map show that, in the fixed milling time, enhancing the Mo content leads to acceleration in the NiAl formation in air atmosphere. The mechanical alloyed powders have a microstructure consisting of nanometer size particles. Mo enhance has a considerable effect on the lowering of crystallite size. The TEM image showed that the Ni50Al45Mo5 nano-particles were less than 10 nm. The average grain size is smaller than those sizes obtained in the NiAl (25 – 35 nm) alloy.https://www.ajnanomat.com/article_63510_94ea11f66ce3206258af3361285b26a1.pdf2018-07-01T11:23:202020-07-11T11:23:2014315610.26655/ajnanomat.2018.6.5mechanical alloyingnanocrystallineintermetallicNi50Al50MoAliKhajesarvi[email protected]true1Department of Mining and Metallurgical Engineering, Yazd University, Safayieh, Daneshgah Blvd, University Main Campus, P.O. Box 89195-741, Yazd, Iran.Department of Mining and Metallurgical Engineering, Yazd University, Safayieh, Daneshgah Blvd, University Main Campus, P.O. Box 89195-741, Yazd, Iran.Department of Mining and Metallurgical Engineering, Yazd University, Safayieh, Daneshgah Blvd, University Main Campus, P.O. Box 89195-741, Yazd, Iran.LEAD_AUTHORGholamhosseinAkbari[email protected]true2Department of Materials Science and Engineering, Shahid Bahonar University, 76135-133, Kerman, Iran.Department of Materials Science and Engineering, Shahid Bahonar University, 76135-133, Kerman, Iran.Department of Materials Science and Engineering, Shahid Bahonar University, 76135-133, Kerman, Iran.AUTHOR1. Albiter, A., Salazar, M., Bedolla, E., Drew, R.,& Perez, R.(2003) Mater. Sci. Eng: A,347:154-164.12. Lin,C., Hong,S., & Lee,P.(2000). Intermetallics,8:1043-1048.23. Choudry,M.,Dollar,M., Eastman,J.(1998). Mater. Sci. Eng: A,256:25-33.34. Moshksar,M.,&Mirzaee,M.(2004). Intermetallics, 12:1361-1366.45. Joardar,J., Pabi,S.,&Murty,B.(2007) J. Alloy. Compd, 429:204-210.56. Sheng,L., Zhang,W., Guo,J., Yang,F., Liang,Y.,&Ye,H.(2010) Intermetallics, 18:740-744.67. Thompson,R.,Zhao,J.,&Hemker,K.(2010) Intermetallics,18:796-802.78. Froes,F., Suryanarayana,C., Russell,K., &Li,C. (1995) Mater. Sci. Eng: A,192:612-623.89. Khajesarvi,A., &Akbari,G.(2016) Metall. Mater. T. A, 47:1881-1888.910. Liu,E., Jia,J., Bai,Y., Wang,W., &Gao,Y.(2014) Mater. Des, 53:596-601.1011. Kubaski,E.,Cintho,O., &Capocchi,J.(2011) Powder. tech, 214:77-82.1112. Zadorozhnyy,V.,Kaloshkin,S., Tcherdyntsev,V., Gorshenkov,M., Komissarov,A.,&Zadorozhnyy,M.(2014) J. Alloy. Compd, 586:373-376.1213. Atzmon,M.(1990) Phys. R. Letters, 64:487.1314. Kubaski,E., Capocchi,J., Farias,F., Mendes,L., &Cintho,O.(2008). Mater. Sci. Tech., 2008:2474-2482.1415. Suryanarayana,C. (2004). Mech.alloy. mill., CRC Press.1516. Takacs,L.(1996). J. Solid. State. Chem., 125:75-84.1617. Gavrilov,D., Vinogradov,O.,&Shaw,W. (1995). Tenth International Conference on Composite Materials. III. Processing and Manufacturing., 11-17.1718. Suryanarayana.C.,&Norton,M. (1998).Microsc. Microanal, 4:513-515.18ORIGINAL_ARTICLEPolyacronitrile Ultra Filtration Membranes Used for Separation of Glycerol from Transesterification Process of Biodiesel production.In the present study the production of biodiesel was performed by using raw material like soybean oil by trans-esterification process. According to the American Society for Testing and Materials (ASTM), the international specification free glycerol in biodiesel should not be more than 0.02 mass %. To achieve the biodiesel with the ASTM specification, biodiesel was separated using prepared PAN ultrafiltration membranes. The polyacronitrile ultra filtration membranes were prepared on supporting material of woven fabric by phase inversion technique of membrane casting. The prepared membranes were characterized in terms of its molecular weight cut off and flux of the membranes. Different molecular weights of the BSA solutions were used to determine the molecular weight cut off of the membranes. Then the obtained 6KDa and 15KDa Ultra filtration PAN membranes were used to separate the glycerol from (FAME) free acid methyl ester. It was observed that the both membranes were separated glycerol from the biodiesel below 0.02 mass % which meets the requirements of the ASTM specification of glycerol. The permeate side of the 6KDa membrane was estimated to be 0.017 mass % of glycerol, whereas, 15 KDa membrane was 0.02 mass % . The glycerol percentage in retained side membranes were increased with time.https://www.ajnanomat.com/article_63579_a092a042bd252b770e0f1946e2e68088.pdf2018-07-01T11:23:202020-07-11T11:23:2015716510.26655/ajnanomat.2018.6.6BiodieselTransesterificationPolyacronitrile Ultra filtrationGlycerolPrafulBansod[email protected]true1Departmentof Chemical Engieering, Sinhgad Technical Education Society, Sinhgad College of Engineering, Pune, India.Departmentof Chemical Engieering, Sinhgad Technical Education Society, Sinhgad College of Engineering, Pune, India.Departmentof Chemical Engieering, Sinhgad Technical Education Society, Sinhgad College of Engineering, Pune, India.LEAD_AUTHORDnyaneshwarRathod[email protected]true2Departmentof Chemical Engieering, Sinhgad Technical Education Society, Sinhgad College of Engineering, Pune, India.Departmentof Chemical Engieering, Sinhgad Technical Education Society, Sinhgad College of Engineering, Pune, India.Departmentof Chemical Engieering, Sinhgad Technical Education Society, Sinhgad College of Engineering, Pune, India.AUTHOR1. Fadhil AB,Aziz AM,Al-Tamer MH.(2016) Energy convers Manag, 108; 255-65.12. Micic RD, Tomic MID, Kiss FE, Nikolic –Djoric EB, Simikic M (2014) Energy converts manag, 86: 717-26.23. Fjerbaek, L, Christensen, K.V, and Nordahl B. (2009) Biotechnology. Bioeng, 102:1298-1315. 34. Fukuda, H, Kondo A, and Noda, H. (2001) J. Biosci. Bioeng, 92: 405-416.45. Atabani, A.E., Silitonga, A.S. and Iran A.B. (2012) Renew Sust Energ Rev, 16:2070-2093.56. X.Kang, X.Gug,H. You, (2015) Energ Source Part B, 10: 155-16167. Y.Q.Ma, L Zheng Q.H, Wang H.Z, Ma R.X, Nilu Z. Gao, (2015) Sust Energ, 34: 1547-155378. S.A.Moreira, J Saraguca, D.F. saraiva, R.carvalho, J.A (2015) fuel.150: 697-70489. Mao V, Konar SK, Boocock DGB. (2004) J Am Oil Chem Soc, 81: 803–8.910. Raheman H. (2005) Biomass Bioenergy, 28: 601–5.1011. Becher P. Emulsions: theory and practice. (2001) American Chemical Society. Washington, DC: Oxford University Press; 2001.1112. Lawrence KW, Shoou-Yuh C, Yung-Tse H, Muralidhara HS, Satya PC. (2007) Centrifugation clarification and thickening. Handbook of environmental engineering, vol. 6. Humana Press; p. 101–1031213. Nicolae S. (2010) Desalination, 250:1070-1072.1314. Anton, A, Kiss, Costin Sorin Blidea, (2012) J. Chem. Technol. Biotechnol ,87:861-879.1415. Peigang Cao, Andre Y Tremblay, Marc A Dube and Katie Morse, (2007) Ind. Eng. Chem. Res, 46:52-58.1516. Atadashi I.M, Aroua M.K, Abdul Aziz, A.R, and Sulaiman N.M.N. (2011) Renew Sustain Energy, 15(9):5051-5062.1617. Maria Carolina ,Serge Gomes, Pedro Augusto, Arroyo Nehemiah, Curvelo Pereira (2015) Influence of oil quality on biodiesel purification by ultra-filtration. Journal of membrane science, 496: 242-249.1718. Yang W, Xingguo W, Yuanfa L, and Shuze T. (2009) Refining of biodiesel by ceramic membranes separation, fuel processing technology,. 90: 422-427.1819. Magno A, Swellen MN, Lava GP , Mira H M R (2013) Renew energ,58:15-20.1920. Ahmadi, H, Hashemifard S.A, and Ismail, A.F. (2017) Chem. Eng. Res. Des,120: 218-230.2021. Gholami, M, Nasseri, S, Feng, C, Matsuura, T, and Khulbe, K. (2003) Desalination, 155: 293-301.2122. Jahad Sahel, Andry Y, Tramblay and Marc A Dube (2010) fuel, 89 : 2260-2266.2223. Jahed Sahel, Marc A,Dube,Andrey Y, Trembky (2011). Fuel Process Technol, 92(7) 1305-1310.23ORIGINAL_ARTICLETheoretical and Experimental Methods for Studying Volumetric Behavior of Binary mixtures Containing Normal AlkanolsIn this paper, molecular interactions in the binary mixtures composed of a xylene and selected 1-alkanol (1-butanol up to 1-octanol) were investigated by measurement of the density at T= 323.15 K. From the experimental data, excess molar volumes were calculated. Obtained data were interpreted based on the type and magnitude of the physico-chemical interactions in the binary liquid systems. In this sense, PC-SAFT was used to correlate the volumetric behavior of binary mixtures. The correlated values of the model were satisfactory and the obtained data are within the uncertainty region.https://www.ajnanomat.com/article_63581_c54eb816d410ae1436f3bd8e55b5d94f.pdf2018-07-01T11:23:202020-07-11T11:23:2016617110.26655/ajnanomat.2018.6.7Density1-AlkanolPC-SAFT modelMohammadAlmasi[email protected]true1Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, 65174, Iran.Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, 65174, Iran.Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, 65174, Iran.LEAD_AUTHOR1. Parveen S, Shukla D, Singh S, Singh KP, Gupta M, Shukla JP (2009) Applied Acoustics, 70: 507–51312. Iloukhani H, Almasi M (2011) Model. J. Solution Chem, 40: 284–29823. Almasi M (2016) J. Therm. Anal. Calorim, 124: 399–40534. Almasi M, Khosravi L (2012) J. Serb. Chem. Soc, 77: 363–37045. Redlich OJ, Kister AT (1948) Ind. Eng. Chem, 40: 345–34856. Gross J, Sadowski G (2001) Ind. Eng. Chem. Res, 40: 1244–126067. Gross J, Sadowski G (2002) Ind. Eng. Chem. Res. 41:5510–5515.7