ORIGINAL_ARTICLE Biogenic synthesis of Palladium nanoparticles mediated by Artemisia abrotanum aqueous extract and its catalytic evaluation for Suzuki coupling reactions A simple and biological method for the fabrication of palladium nanoparticles (Pd NPs) was developed, applying the non-toxic and sustainable natural extract from Artemisia abrotanum as the reducing, stabilizing and capping agent. UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS), were utilized to classify the synthesized Pd NPs@Artemisia catalyst. The Pd NPs@Artemisia demonstrated excellent behavior as a reusable nanocatalyst in Suzuki-Miyaura cross-coupling reactions at room temperature. The nanocatalyst was recycled 7 times without any significant deduction in catalytic activity. https://www.ajnanomat.com/article_61699_047a545a03641e59ba1a73c5ad4b9301.pdf 2018-07-01T11:23:20 2020-07-11T11:23:20 104 114 10.26655/ajnanomat.2018.6.1 Pd nanoparticles Artemisia abrotanum Green synthesis Suzuki C-C coupling Bond formation Catalyst Fatemeh Ahmadi true 1 Department of Chemistry, Sciences and Research Branch, Islamic Azad University, Tehran, Iran Department of Chemistry, Sciences and Research Branch, Islamic Azad University, Tehran, Iran Department of Chemistry, Sciences and Research Branch, Islamic Azad University, Tehran, Iran AUTHOR Malak Hekmati true 2 Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran, Iran Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran, Iran Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran, Iran AUTHOR Mohammad Yousefi [email protected] true 3 Department of Chemistry, Sciences and Research Branch, Islamic Azad University, Tehran, Iran. Department of Chemistry, Sciences and Research Branch, Islamic Azad University, Tehran, Iran. Department of Chemistry, Sciences and Research Branch, Islamic Azad University, Tehran, Iran. AUTHOR Hojat Veisi [email protected] true 4 Department of Chemistry, Payame Noor University, PO BOX 19395-4697 Tehran, Iran. Department of Chemistry, Payame Noor University, PO BOX 19395-4697 Tehran, Iran. Department of Chemistry, Payame Noor University, PO BOX 19395-4697 Tehran, Iran. LEAD_AUTHOR [1] Iravani S, (2011) Green Chemistry 13: 2638-2650 1 [2] Zhu, H, Du, M, Zou, M, Xu, C, & Fu, Y (2012) Dalton Transactions 41:10465-10471 2 [3] Raveendran P, Fu J, &Wallen SL (2003) Journal of the American Chemical Society 125: 13940-13941. 3 [4] Kalidindi SB, &Jagirdar BR, (2012). ChemSusChem, 5: 65-75 4 [5] Varma RS, (2012) Current Opinion in Chemical Engineering 1: 123-128. 5 [6] Nakhjavan B, Tahir MN, Natalio F, Gao H, Schneider K, Schladt T &Sönnichsen C (2011) Journal of Materials Chemistry 21: 8605-8611 6 [7] Tahir MN, Natalio F, Cambaz MA, Panthöfer M, Branscheid R, Kolb U &Tremel W (2013) Nanoscale 5: 9944-9949 7 [8] Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J &Gardea-Torresdey JL (2011) Journal of hazardous materials 186: 1-15 8 [9] Byrappa K, Ohara S &Adschiri T (2008) Advanced Drug Delivery Reviews 60: 299-327 9 [10] Campelo JM, Luna D, Luque R, Marinas JM & Romero AA (2009) ChemSusChem 2: 18-45 10 [11] Otari SV, Patil RM, Waghmare SR, Ghosh SJ &Pawar SH (2013) Dalton Transactions 42: 9966-9975 11 [12] Hennebel T, De Corte S, Verstraete W & Boon N (2012) Current opinion in biotechnology 23:555-561 12 [13] Tahir MN, Natalio F, Therese HA, Yella A, Metz N, Shah MR & Müller WE (2009) Advanced Functional Materials 19: 285-291 13 [14] Tahir MN, Théato P, Müller WE, Schröder H C, Borejko A, Faiß S &Tremel W (2005) Chemical Communications 44: 5533-5535 14 [15] Akhtar M S, Panwar J & Yun YS (2013) ACS Sustainable Chemistry & Engineering, 1: 591-602 15 [16] (a) Mittal A K, Chisti Y & Banerjee UC (2013) Biotechnology advances 31:346-356; 16 (b) Veisi H, Hemmati S, Shirvani H &Veisi H (2016) Applied Organometallic Chemistry 30: 387-391 17 [17] Gan PP, & Li, SFY (2012) Reviews in Environmental Science and Bio/Technology 11: 169-206 18 [18] Coccia F, Tonucci L, Bosco D, Bressan M & d'Alessandro N (2012) Green Chemistry 14: 1073-1078 19 [19] Cheng F, Betts JW, Kelly SM, Schaller J &Heinze T (2013) Green Chemistry 15: 989-998 20 [20] Kumar KM, Mandal B K &Tammina SK (2013) RSC Advances, 3: 4033-4039 21 [21] Zhang G, Du M, Li Q, Li X, Huang J, Jiang X, & Sun D (2013) RSC Advances 3: 1878-1884 22 [22] Lee HJ, Song JY & Kim BS (2013) Journal of Chemical Technology and Biotechnology 88: 1971-1977 23 [23] Dauthal P &Mukhopadhyay M (2012) Industrial & Engineering Chemistry Research 51: 13014-13020 24 [24] a) Li W, Zhang H, Gao Y, Jiu J, Li CF, Chen C & Nagao S (2017) Journal of Materials Chemistry C 5: 1155-1164 25 b) He Y, Piper D M, Gu M, Travis J J, George S M, Lee S H & Zhang J G (2014) Acs Nano 8: 11816-11823 26 c) Shen Z, Han G, Liu C, Wang X & Sun R (2016) Journal of Alloys and Compounds 686: 82-89 27 [25] Arunachalam KD, Annamalai SK & Hari S (2013) International journal of nanomedicine 8: 1307 28 [26] Zaera F (2013) Chemical Society Reviews 42: 2746-2762 29 [27] Fortman GC & Nolan SP (2011) Chemical Society Reviews 40: 5151-5169 30 [28] (a) Hickman AJ & Sanford MS (2012) Nature 484: 177 31 (b) Ghorbani-Vaghei R, Hemmati S, Hashemi, M &Veisi H (2015) ComptesRendusChimie 18: 636-643 32 (c) Pirhayati M, Veisi H, &Kakanejadifard A (2016) RSC ADVANCES 6:27252-27259 33 (d) Khakiani B A, Pourshamsian K &Veisi H (2015) Applied Organometallic Chemistry 5: 259-265 34 [29] Zhu M, Wang Y, Wang C, Li W &Diao G (2013) Catalysis Science & Technology, 3: 952-961 35 [30] Lu Y M, Zhu HZ, Li W G, Hu B & Yu SH (2013) Journal of Materials Chemistry A, 1: 3783-3788 36 [31] Santra S, Ranjan P, Bera P, Ghosh P & Mandal, SK (2012) RSC Advances, 2: 7523-7533 37 [32] Deng S, Lei J, Huang Y, Yao X, Ding L &Ju, H (2012) Chemical Communications 48: 9159-9161 38 [33] Itoh H, Maeda H, Yamada S & Hori Y (2012) ChemCatChem, 4: 1737-1740 39 [34] Khan M, Khan M, Kuniyil M, Adil SF, Al-Warthan A, Alkhathlan HZ & Siddiqui M R H (2014) Dalton Transactions 43: 9026-9031 40 [35] (a) Veisi H, Masti R, Kordestani D, Safaei M & Sahin O (2014) Journal of Molecular Catalysis A: Chemical 385:61-67 41 (b) Pérez-Lorenzo M (2012) The Journal of Physical Chemistry Letters 3: 167-174 42 (c) Veisi H, Pirhayati M, &Kakanejadifard A (2017) Tetrahedron Letters 58: 4269-4276 43 (d) Veisi H, Pirhayati M &Kakanejadifard A (2017) Tetrahedron Letters 58: 4269-4276 44 [36] Liang L, Diallo AK, Salmon L, Ruiz J &Astruc D (2012) European Journal of Inorganic Chemistry 2012: 2950-2958 45 [37] Liang L, Diallo AK, Salmon L, Ruiz J &Astruc D (2012) European Journal of Inorganic Chemistry 2012: 2950-2958 46 [38] Gavia DJ & Shon YS (2012) effects on Langmuir 28: 14502-14508 47 [39] Joerg G, Thomas B, Christof J &Mukesh M (2000) Medical Economics Company Montvale/ New Jersey 319. 48 [40] (a) Veisi H, Faraji AR, Hemmati,] S & Gil A (2015) Applied Organometallic Chemistry 29: 517-523 49 (b) Veisi H, Ghorbani‐Vaghei R, Hemmati S, Aliani MH &Ozturk T (2015) Applied Organometallic Chemistry 29: 26-32 50 [41] (a) Lebaschi S, Hekmati M &Veisi H (2017) Journal of colloid and interface science 485:223-231 51 (b) Veisi H, Rashtiani A, &Barjasteh V (2016) Applied Organometallic Chemistry 30: 231-235 52 (c) Veisi H, Hemmati S, Shirvani H &Veisi H (2016) Applied Organometallic Chemistry 30: 387-391 53 [42] Aromal SA, Vidhu VK & Philip D (2012) SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy 85: 99-104 54 [43] Cumberland SL &Strouse GF (2002) Langmuir 18: 269-276 55 [44] Sheny DS, Mathew J & Philip D (2011)SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy 79: 254-262 56 [45] Philip D &Unni C (2011) Physica E: Low-dimensional Systems and Nanostructures 43:1318-1322 57 [46] Veisi H, Ghorbani‐Vaghei R, Hemmati S, Aliani MH &Ozturk T (2015) Applied Organometallic Chemistry 29: 26-32. 58 [47] Veisi H, Khazaei A, Safaei M &Kordestani D (2014) Journal of Molecular Catalysis A: Chemical 382:106-113 59 [48] a) Veisi H, Najafi S &Hemmati S (2018) International journal of biological macromolecules 113: 286-194 60 (b) Bonyasi F, Hekmati M, &Veisi H (2017) Journal of colloid and interface science 496: 177-187 61 (c) Pirhayati M, Veisi H &Kakanejadifard A (2016) RSC ADVANCES 6: 27252-27259 62 (d) Veisi H, Hemmati S, Shirvani H &Veisi H (2016) Applied Organometallic Chemistry 30: 387-391 63 (e) Veisi H, Taheri S &Hemmati S (2016) Green Chemistry 18: 6337-6348. 64
ORIGINAL_ARTICLE Effect of Aloe vera on synthesis of nano Tin (iv) oxide Tin (IV) oxide (SnO2) is a compound semiconductor which has been used for gas sensing and fluoride removal. SnO2 was synthesized with tin chloride as a precursor by sol gel method. Aloe vera was added during the preparation of SnO2 to study its effect on the nanosize, composition and morphology. The prepared nanopowders are characterized by XRD, SEM and FTIR to analyze the crystallite size, morphology, functional groups and absorption bands. FTIR reveal the change in functional group and shift in absorbance due to presence of Aloe vera. XRD analysis with Williamson Hall plot confirms the nanosize which was in accordance with the SEM results. PL spectra were recorded to find the effect of band gap and intensity on SnO2 due to aloe vera. https://www.ajnanomat.com/article_61809_5de55a57b6d1d4fe0d220697bd2affed.pdf 2018-07-01T11:23:20 2020-07-11T11:23:20 115 121 10.26655/ajnanomat.2018.6.2 SnO2 Aloe vera Sol gel FTIR Veeriah Veeraganesh [email protected] true 1 Department of Physics, Thiagarajar College of Engineering, Madurai-625015. Department of Physics, Thiagarajar College of Engineering, Madurai-625015. Department of Physics, Thiagarajar College of Engineering, Madurai-625015. AUTHOR Alagappan Subramaniyan [email protected] true 2 Departments of Mechanical Engineering, Thiagarajar College of Engineering, Madurai-625015 Departments of Mechanical Engineering, Thiagarajar College of Engineering, Madurai-625015 Departments of Mechanical Engineering, Thiagarajar College of Engineering, Madurai-625015 LEAD_AUTHOR Thambu Sornakumar [email protected] true 3 Department of Physics, Thiagarajar College of Engineering, Madurai-625015. Department of Physics, Thiagarajar College of Engineering, Madurai-625015. Department of Physics, Thiagarajar College of Engineering, Madurai-625015. AUTHOR Batzill, M., & Diebold, U. (2005). Prog. Surf. Sci., 79: 47–154. 1 Anuradha, S., & Rajanna, K. (2008). Int. J. Smart Sens. Intell. Syst., 1: 498–511. 2 Patel, M. K., Singh, J., Singh, M. K., Agrawal, V. V., Ansari, S. G., & Malhotra, B. D. (2013). J. Nanosci. Nanotechnol., 13: 1671–1678. 3 Jana, a K. (2000). J. Photochem. Photobiol. a-Chemistry, 132: 1–17. 4 Buzea, C., Pacheco, I. I., & Robbie, K. 2007. Biointerphases, 2: MR17-MR71. 5 S. T. Chang, I. C. Leu, M. H. Hon (2002). Electrochem. Solid-State Lett, 5(8), 71-74. 6 Nowak, A. P., Lisowska-Oleksiak, A., Siuzdak, K., Sawczak, M., Gazda, M., Karczewski, J., & Trykowski, G. (2015). RSC Adv., 5: 84321–84327. 7 Woo, D.-C., Koo, C.-Y., Ma, H.-C., & Lee, H.-Y. (2012). Trans. Electr. Electron. Mater., 13: 241–244. 8 Maestre, D., Cremades, A., & Piqueras, J. 2004. Microelectron. (2004). 24th Int. Conf., 2: 433–436 vol.2. 9 Dimitriev, Y., Ivanova, Y., & Iordanova, R. (2008). J. Univ. Chem. Technol. Metall., 43: 181–192. 10 Holmberg, K. (2001). Curr. Opin. Colloid Interface Sci., 6: 148–159. 11 Ibrahim, S., Fadhil, A. M. A., & Al- Ani, N. K. (2014). J. Al-Nahrain Univ. Sci., 17: 165–171. 12 Surjushe, A., Vasani, R., & Saple, D. G. (2008). Indian J. Dermatol., 53: 163–6. 13 Chen, W., Ghosh, D., & Chen, S. (2008). J. Mater. Sci., 43: 5291–5299. 14
ORIGINAL_ARTICLE Simulation and Characterization of PIN Photodiode for Photonic Applications Research conducted on silicon based photodetector technology has recently shown rapidly growing momentum to develop the robust silicon based detectors for photonic applications. The thrust is to manufacture low cost and high efficiency detectors with CMOS process compatibility. In this study, a new design and characterization of PIN photodiode is envisaged. The simulation tool, Silvaco TCAD (and its variants), was used to design and simulate the processes of the device. Electrical and optical measurements such as I-V characteristics (dark current), and internal/external quantum efficiencies were analysed to evaluate the designed and processed device structure for its potential applications in photonics and other detection mechanisms. https://www.ajnanomat.com/article_63013_7c977ea4ae425dba5814b3bedaa804c3.pdf 2018-07-01T11:23:20 2020-07-11T11:23:20 122 134 10.26655/ajnanomat.2018.6.3 PIN photodiode CMOS I-V characteristics Quantum efficiency Waqas Ahmad [email protected] true 1 SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China LEAD_AUTHOR Muhammad Umair Ali [email protected] true 2 Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China AUTHOR Vijay Laxmi [email protected] true 3 THz Technical Research Center of Shenzhen University, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, P.R. China THz Technical Research Center of Shenzhen University, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, P.R. China THz Technical Research Center of Shenzhen University, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, P.R. China AUTHOR Ahmed Shuja Syed [email protected] true 4 Centre for Advanced Electronics and Photovoltaic Engineering, International Islamic University, Islamabad 44000, Pakistan Centre for Advanced Electronics and Photovoltaic Engineering, International Islamic University, Islamabad 44000, Pakistan Centre for Advanced Electronics and Photovoltaic Engineering, International Islamic University, Islamabad 44000, Pakistan AUTHOR 1. Bank SR, Campbell JC, Maddox SJ, Ren M, Rockwell A-K, Woodson ME, March SD (2018) IEEE J. Sel. Top. Quant. Electron 24: 1-7. 1 2. Bisogni MG, Morrocchi M (2016) Nucl. Instr. Meth. Phys. Res A 809: 140–148. 2 3. Palai G (2017) Optik 133: 108–113. 3 4. Menon PS, Shaari S (2004) The 4th Annual Seminar of National Science Fellowship, Malaysia. 4 5. Yotter RA, Wilson DM (2003) IEEE Sens. J 3: 288-303. 5 6. Alexandre A, Pinna A, Granado B, Garda P (2004) IEEE ICIT’04 1: 142-147. 6 7. Andjelkov MS, Risti GS (2015) Radiat. Meas 75: 29-38. 7 8. Shuhaimi NI, Mohamad M, Jubadi WM, Tugiman R, Zinal N, Zin RM (2010) ICSE 12-14. 8 9. Abiri E, Salehi MR, Kohan S, Mirzazadeh M (2010) PACCS 1: 60-62. 9 10. Jubudi WM, Norafzaniza S, Noor M (2010) SIEA 428-432. 10 11. Vergilio AW, Pekarik JJ, Jain V (2014) BCTM 207-210. 11 12. Zainudin Z, Ismail AF, Hasbullah NF (2014) Computer and Communications Engineering 268-268. 12 13. Mohammed WF, Tikriti MN (2014) SSD1-5. 13 14. Conradi J (1981) Proc. SPIE Int. Soc. Opt Eng 266: 49-55. 14 15. Razeghi M (2017) Vacuum 146: 308-328. 15 16. Athena User Manual (2016). 16 17. Device Simulation Framework https://www.silvaco.com/products/device_simulation/atlas.html. Accessed 09 April 2018. 17 18. Atlas User Manual (2006). 18 19. Fallahpour AH, Kienitz S, Lugli P (2017) IEEE Trans. Electron Devices 64: 2649-2654. 19 20. Qiu X (2018) Adv. Optical Mater 6: 1700638. 20 21. Yi X, Huang Z, Lin, Li C, Chen S, Huang W, Li J, Wang J (2017) J. Semicond 38: 042001-5. 21 22. Bartolomeo AD, Luongo G, Giubileo F, Funicello N, Niu G, Schroeder T, Lisker M, Lupin G (2017) 2D Mater 4: 025075. 22 23. Bie Y-Q, Grosso G, Heuck M, Furchi MM, Cao Y, Zheng J, Bunandar D, Navarro-Moratalla E, Zhou L, Efetov DK, Taniguchi T, Watanabe K, Kong J, Englund D, Jarillo-Herrero P (2017) Nat. Nano 12: 1124-1129. 23 24. Su Z, Hosseini ES, Timurdogan E, Sun J, Moresco M, Leake G, Adam TN, Coolbaugh DD, Watts MR (2017) Opt. Lett 42: 2878-2881. 24
ORIGINAL_ARTICLE One Pot synthesis of 2-substituted benzothiazoles catalyzed by Bi2O3 nanoparticles A convenient and efficient synthesis of 2-substituted benzothiazole derivatives are carried out by the one-pot reaction of 2-aminothiophenol with various aromatic aldehydes in using Bi2O3 nanoparticles as a catalyst at 60°C. The structure of the synthesized compounds have been confirmed on the basis of by FT-IR, H1 NMR, C13 NMR, Mass spectrometry and elemental analysis. This protocol afforded advantages i.e. purification of products by non-chromatographic method. Bi2O3 nanoparticles is cheap, readily available, versatile, environment friendly and recyclable. The reaction has been carried out in ethanol, thus eliminating hazardous organic solvents. https://www.ajnanomat.com/article_63467_4660e4b372fdf6cdd03d34509b0dbbf6.pdf 2018-07-01T11:23:20 2020-07-11T11:23:20 135 142 10.26655/ajnanomat.2018.6.4 Benzothiazole derivatives Synthesis Catalyzed and Nano-particles Jyoti Sharma [email protected] true 1 School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011 School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011 School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011 LEAD_AUTHOR Ravi Bansal [email protected] true 2 School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011 School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011 School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011 AUTHOR Pradeep Soni [email protected] true 3 School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011 School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011 School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011 AUTHOR Swati Singh [email protected] true 4 School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011 School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011 School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011 AUTHOR Anand Halve [email protected] true 5 School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011 School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011 School of studies in chemistry, Jiwaji University, Gwalior (M.P.) India-474011 AUTHOR 1. H. Razavi, S. K. Palaninathan, E. T. Powers, R. L. Wiseman, H. E. Purkey, N. N. Mohamedmohaideen, S. Deechongkit, K. P. Chiang, M. T. A. Dendle, J. C. Sacchettini and J. W. Kelly (2003) Angew. Chem. Int. Ed. 42: 2758-61. 1 2. P.Y. Coqueron, C. Didier and M.A. Ciufolini (2003) Angew. Chem. Int. Ed. 42: 1411-1414. 2 3. T.E. Smith, W.H. Kuo, E.P. Balskus, V.D. Bock, J.L. Roizen, A.B. Theberge, K.A. Carroll, T. Kurihara and J.D. Wessler (2008) J. Org. Chem. 73: 142-150. 3 4. R. Sompalle and S.M. Roopan (2014) Chem. Sci. Rev. Lett. 2: 408-414; (b) P.S. Yadav, D. Devprakash and G.P. Senthilkumar (2011) Int. J. Pharm. Sci. Drug Res.3: 1-7. 4 5. W. Huang and G.F. Yang (2006) Bioorg. Med. Chem. 14: 8280-8285; (b) C. Sheng, X. Che, W. Wang, S. Wang, Y. Cao, J. Yao, Z. Miao and W. Zhang (2011) Eur. J. Med.Chem. 46: 1706-1712. 5 6. S. Bondock, W. Fadaly and M.A. Metwally (2009) Eur. J. Med. Chem. 44: 4813-4818. 6 7. S. Saeed, N. Rashid, P.G. Jones, M. Ali and R. Hussain (2010) Eur. J. Med. Chem. 45: 1323-1331. 7 8. I. Hutchinson, S.A. Jennings, B.R. Vishnuvajjala, A.D. Westwell and M.F.G. Stevens (2002) J. Med. Chem. 45: 744-747. 8 9. S. Aiello, G. Wells, E.L. Stone, H. Kadri, R. Bazzi, D.R. Bell, M.F.G. Stevens, C.S. Matthews and T.D. Bradshaw (2008) J. Med. Chem. 51: 5135-5239. 9 10. V.R. Solomon, C. Hu and H. Lee (2009) Bioorg. Med. Chem. 17: 7585-7592. 10 11. L. Racane, M. Kralj, L. Suman, R. Stojkovic´, V. Tralic´-Kulenovic´ and G. Karminski-Zamola (2010) Bioorg. Med. Chem. 18: 1038-1044. 11 12. S. Tzanopoulou, M. Sagnou, M. Paravatou-Petsotas, E. Gourni, G. Loudos, S. Xanthopoulos, D. Lafkas, H. Kiaris, A. Varvarigou, I.C. Pirmettis, M. Papadopoulos and M. Pelecanou (2010) J. Med. Chem. 53: 4633-4641. 12 13. V. G. Ugale, H. M. Patel, S. G. Wadodkar, S. B. Bari, A. A. Shirkhedkar, S. J. Surana (2012) Eur. J. Med. Chem. 53: 107-113. 13 14. A. Zablotskaya, I. Segal, A. Geronikaki, T. Eremkina, S. Belyakov, M. Petrova, I. Shestakova, L. Zvejniecea and V. Nikolajeva (2013) Eur. J. Med. Chem. 70: 846-856. 14 15. G. Mariappan, P. Prabhat, L. Sutharson, J. Banerjee, U. Patangia and S. Nath (2012) J. Korean Chem. Soc. 56: 251-256. 15 16. S. R. Nagarajan, G. A. De Crescenzo, D. P. Getman, H. F. Lu, J. A. Sikorski, J. L. Walker, J. J. McDonald, K. A. Houseman, G. P. Kocan, N. Kishore, P. P. Mehta, C. L. Funkes-Shippy and L. Blystone (2003) Bioorg. Med. Chem. 11: 4769-4777. 16 17. P. Patel, J. Pillai, N. Darji and B. Patel (2012) Int. J. Drug Res. Technol. 2: 170-176. 17 18. S. Shafi, M.M. Alam, N. Mulakayala, C. Mulakayala, G. Vanaja, A.M. Kalle, R. Pallu and M.S. Alam (2012) Eur. J. Med. Chem. 49: 324-333. 18 19. S.L. Johnson, L.H. Chen, E. Barile, A. Emdadi, M. Sabet, H. Yuan, J. Wei, D. Guiney and M. Pellecchia (2009) Bioorg. Med. Chem. 17: 3352-3368. 19 20. K.M. Khan, F. Rahim, S.A. Halim, M. Taha, M. Khan, S. Perveen, M. Zaheer-ul-Haq, M.A. Mesaik and M.I. Choudhary (2011) Bioorg. Med. Chem. 19: 4286-4294. 20 21. L. Huang, T. Su, W. Shan, Z. Luo, Y. Sun, F. He and X. Li (2012) Bioorg. Med. Chem. 20: 3038-3048. 21 22. Y.H. Cho, C.Y. Lee, D.C. Ha and C.H. Cheon (2012) Adv. Synth. Catal. 354: 2992-2996. 22 23. N. Park, Y. Heo, M.R. Kumar, Y. Kim and S. Lee (2012) Eur. J. Org. Chem. 2012: 1984-1993. 23 24. Y. Liao, H. Qi, S. Chen, Pengcheng Jiang, Wang Zhou, and Guo-Jun Deng (2012) Org. Lett. 14: 6004-6007. 24 25. L.Y. Fan, Y.H. Shang, X.X. Li and W.J. Hua (2015) Chin. Chem. Lett. 26: 77-80. 25 26. M. Farahi, B. Karami and M. Azari (2013) Comptes Rendus Chimie. 16: 1029-1034. 26 27. F. M. Moghaddam, G. R. Bardajee, H. Ismaili and S.M.D. Taimoory (2006) Synth. commun. 36: 2543-2548. 27 28. Y. Raidi, R. Mamouni, R. Azzalou, M. E. Haddad, S. Routier, G. Guillaumet and S. Lazar (2011) Tetrahedron Lett. 52: 3492-3495. 28 29. X. Wen, J.E. Bakali, R.D. Poulain, and B. Deprez (2012) Tetrahedron Lett. 53: 2440-2443. 29 30. Y-X Chen, L-F Qian, W. Zhang, and B. Han (2008) Angew. Chem. Int. Ed. 47: 9330-9333. 30 31. Z. Yang, X. Chen, S. Wang, J. Liu, K. Xie, A. Wang, Z. Tan (2012) J. Org. Chem. 77: 7086-7091. 31 32. G. H. Sung, I.H. Lee, B.R. Kim, D. S. Shin, J.J. Kim, S.G. Lee and Y.J. Yoon (2013) Tetrahedron 69: 3530-3535. 32 33. K. Bahrami, M.M. Khodaei and F. Naali (2008) J. Org. Chem. 73: 6835-6837. 33 34. H. Y. Guo, J.C. Li and Y.L. Shang (2009) Chin. Chem. Lett. 20: 1408-1410. 34 35. C. Praveen, A. Nandakumar, P. Dheenkumar, D. Muralidharan and P. Perumal (2012) J. Chem. Sci. 124: 609-624. 35 36. T.G. Deligeorgiev, S. Kaloyanova, A. Vasilev and J.J. Vaquero (2010) J. Phosphorus, Sulfur Silicon Relat. Elem.185: 2292-2302. 36 37. M. Kodomari, Y. Tamaru and T. Aoyama (2004) Synth. Commun.34: 3029-3036. 37 38. S. Banerjee, S. Payra and A. Saha (2014) Tetrahedron Lett. 55: 5515-5520. 38 39. A. Teimouri, A.N. Chermahini, H. Salavati and L. Ghorbanian (2013) J. mol. Catal. A: chem. 373: 38-45. 39 40. S. M. Inamdar, V. K. More and S. K. Mandal (2013) Tetrahedron Lett. 54: 579-583. 40
ORIGINAL_ARTICLE Study of molybdenum effect on synthesis behavior of nanocrystalline NiAl intermetallic during mechanical alloying The mechanical alloying (MA) procedure was used to synthesize the Ni50Al50 and Ni50Al45Mo5 nanocrystalline intermetallic compound using the pure Ni, Al and Mo elemental powders under an argon atmosphere for different times (8, 16, 48, 80 and 128 h) in a planetary ball mill with hardened steel balls (12 balls-1cm and 4 balls-2cm in diameter). The mechanical alloying was carried out in the attendance of various Mo contents as a micro-alloying element for various milling times. Microstructural characterization and structural changes of powder particles during mechanical alloying were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Outcomes confirmed that the synthesis behavior of NiAl intermetallic depends on the milling time and Mo content. The results show that after than 80h milling, the intermetallic phase is produced after opening the vial lid. X-ray map show that, in the fixed milling time, enhancing the Mo content leads to acceleration in the NiAl formation in air atmosphere. The mechanical alloyed powders have a microstructure consisting of nanometer size particles. Mo enhance has a considerable effect on the lowering of crystallite size. The TEM image showed that the Ni50Al45Mo5 nano-particles were less than 10 nm. The average grain size is smaller than those sizes obtained in the NiAl (25 – 35 nm) alloy. https://www.ajnanomat.com/article_63510_94ea11f66ce3206258af3361285b26a1.pdf 2018-07-01T11:23:20 2020-07-11T11:23:20 143 156 10.26655/ajnanomat.2018.6.5 mechanical alloying nanocrystalline intermetallic Ni50Al50 Mo Ali Khajesarvi [email protected] true 1 Department of Mining and Metallurgical Engineering, Yazd University, Safayieh, Daneshgah Blvd, University Main Campus, P.O. Box 89195-741, Yazd, Iran. Department of Mining and Metallurgical Engineering, Yazd University, Safayieh, Daneshgah Blvd, University Main Campus, P.O. Box 89195-741, Yazd, Iran. Department of Mining and Metallurgical Engineering, Yazd University, Safayieh, Daneshgah Blvd, University Main Campus, P.O. Box 89195-741, Yazd, Iran. LEAD_AUTHOR Gholamhossein Akbari [email protected] true 2 Department of Materials Science and Engineering, Shahid Bahonar University, 76135-133, Kerman, Iran. Department of Materials Science and Engineering, Shahid Bahonar University, 76135-133, Kerman, Iran. Department of Materials Science and Engineering, Shahid Bahonar University, 76135-133, Kerman, Iran. AUTHOR 1. Albiter, A., Salazar, M., Bedolla, E., Drew, R.,& Perez, R.(2003) Mater. Sci. Eng: A,347:154-164. 1 2. Lin,C., Hong,S., & Lee,P.(2000). Intermetallics,8:1043-1048. 2 3. Choudry,M.,Dollar,M., Eastman,J.(1998). Mater. Sci. Eng: A,256:25-33. 3 4. Moshksar,M.,&Mirzaee,M.(2004). Intermetallics, 12:1361-1366. 4 5. Joardar,J., Pabi,S.,&Murty,B.(2007) J. Alloy. Compd, 429:204-210. 5 6. Sheng,L., Zhang,W., Guo,J., Yang,F., Liang,Y.,&Ye,H.(2010) Intermetallics, 18:740-744. 6 7. Thompson,R.,Zhao,J.,&Hemker,K.(2010) Intermetallics,18:796-802. 7 8. Froes,F., Suryanarayana,C., Russell,K., &Li,C. (1995) Mater. Sci. Eng: A,192:612-623. 8 9. Khajesarvi,A., &Akbari,G.(2016) Metall. Mater. T. A, 47:1881-1888. 9 10. Liu,E., Jia,J., Bai,Y., Wang,W., &Gao,Y.(2014) Mater. Des, 53:596-601. 10 11. Kubaski,E.,Cintho,O., &Capocchi,J.(2011) Powder. tech, 214:77-82. 11 12. Zadorozhnyy,V.,Kaloshkin,S., Tcherdyntsev,V., Gorshenkov,M., Komissarov,A.,&Zadorozhnyy,M.(2014) J. Alloy. Compd, 586:373-376. 12 13. Atzmon,M.(1990) Phys. R. Letters, 64:487. 13 14. Kubaski,E., Capocchi,J., Farias,F., Mendes,L., &Cintho,O.(2008). Mater. Sci. Tech., 2008:2474-2482. 14 15. Suryanarayana,C. (2004). Mech.alloy. mill., CRC Press. 15 16. Takacs,L.(1996). J. Solid. State. Chem., 125:75-84. 16 17. Gavrilov,D., Vinogradov,O.,&Shaw,W. (1995). Tenth International Conference on Composite Materials. III. Processing and Manufacturing., 11-17. 17 18. Suryanarayana.C.,&Norton,M. (1998).Microsc. Microanal, 4:513-515. 18
ORIGINAL_ARTICLE Polyacronitrile Ultra Filtration Membranes Used for Separation of Glycerol from Transesterification Process of Biodiesel production. In the present study the production of biodiesel was performed by using raw material like soybean oil by trans-esterification process. According to the American Society for Testing and Materials (ASTM), the international specification free glycerol in biodiesel should not be more than 0.02 mass %. To achieve the biodiesel with the ASTM specification, biodiesel was separated using prepared PAN ultrafiltration membranes. The polyacronitrile ultra filtration membranes were prepared on supporting material of woven fabric by phase inversion technique of membrane casting. The prepared membranes were characterized in terms of its molecular weight cut off and flux of the membranes. Different molecular weights of the BSA solutions were used to determine the molecular weight cut off of the membranes. Then the obtained 6KDa and 15KDa Ultra filtration PAN membranes were used to separate the glycerol from (FAME) free acid methyl ester. It was observed that the both membranes were separated glycerol from the biodiesel below 0.02 mass % which meets the requirements of the ASTM specification of glycerol. The permeate side of the 6KDa membrane was estimated to be 0.017 mass % of glycerol, whereas, 15 KDa membrane was 0.02 mass % . The glycerol percentage in retained side membranes were increased with time. https://www.ajnanomat.com/article_63579_a092a042bd252b770e0f1946e2e68088.pdf 2018-07-01T11:23:20 2020-07-11T11:23:20 157 165 10.26655/ajnanomat.2018.6.6 Biodiesel Transesterification Polyacronitrile Ultra filtration Glycerol Praful Bansod [email protected] true 1 Departmentof Chemical Engieering, Sinhgad Technical Education Society, Sinhgad College of Engineering, Pune, India. Departmentof Chemical Engieering, Sinhgad Technical Education Society, Sinhgad College of Engineering, Pune, India. Departmentof Chemical Engieering, Sinhgad Technical Education Society, Sinhgad College of Engineering, Pune, India. LEAD_AUTHOR Dnyaneshwar Rathod [email protected] true 2 Departmentof Chemical Engieering, Sinhgad Technical Education Society, Sinhgad College of Engineering, Pune, India. Departmentof Chemical Engieering, Sinhgad Technical Education Society, Sinhgad College of Engineering, Pune, India. Departmentof Chemical Engieering, Sinhgad Technical Education Society, Sinhgad College of Engineering, Pune, India. AUTHOR 1. Fadhil AB,Aziz AM,Al-Tamer MH.(2016) Energy convers Manag, 108; 255-65. 1 2. Micic RD, Tomic MID, Kiss FE, Nikolic –Djoric EB, Simikic M (2014) Energy converts manag, 86: 717-26. 2 3. Fjerbaek, L, Christensen, K.V, and Nordahl B. (2009) Biotechnology. Bioeng, 102:1298-1315. 3 4. Fukuda, H, Kondo A, and Noda, H. (2001) J. Biosci. Bioeng, 92: 405-416. 4 5. Atabani, A.E., Silitonga, A.S. and Iran A.B. (2012) Renew Sust Energ Rev, 16:2070-2093. 5 6. X.Kang, X.Gug,H. You, (2015) Energ Source Part B, 10: 155-161 6 7. Y.Q.Ma, L Zheng Q.H, Wang H.Z, Ma R.X, Nilu Z. Gao, (2015) Sust Energ, 34: 1547-1553 7 8. S.A.Moreira, J Saraguca, D.F. saraiva, R.carvalho, J.A (2015) fuel.150: 697-704 8 9. Mao V, Konar SK, Boocock DGB. (2004) J Am Oil Chem Soc, 81: 803–8. 9 10. Raheman H. (2005) Biomass Bioenergy, 28: 601–5. 10 11. Becher P. Emulsions: theory and practice. (2001) American Chemical Society. Washington, DC: Oxford University Press; 2001. 11 12. Lawrence KW, Shoou-Yuh C, Yung-Tse H, Muralidhara HS, Satya PC. (2007) Centrifugation clarification and thickening. Handbook of environmental engineering, vol. 6. Humana Press; p. 101–103 12 13. Nicolae S. (2010) Desalination, 250:1070-1072. 13 14. Anton, A, Kiss, Costin Sorin Blidea, (2012) J. Chem. Technol. Biotechnol ,87:861-879. 14 15. Peigang Cao, Andre Y Tremblay, Marc A Dube and Katie Morse, (2007) Ind. Eng. Chem. Res, 46:52-58. 15 16. Atadashi I.M, Aroua M.K, Abdul Aziz, A.R, and Sulaiman N.M.N. (2011) Renew Sustain Energy, 15(9):5051-5062. 16 17. Maria Carolina ,Serge Gomes, Pedro Augusto, Arroyo Nehemiah, Curvelo Pereira (2015) Influence of oil quality on biodiesel purification by ultra-filtration. Journal of membrane science, 496: 242-249. 17 18. Yang W, Xingguo W, Yuanfa L, and Shuze T. (2009) Refining of biodiesel by ceramic membranes separation, fuel processing technology,. 90: 422-427. 18 19. Magno A, Swellen MN, Lava GP , Mira H M R (2013) Renew energ,58:15-20. 19 20. Ahmadi, H, Hashemifard S.A, and Ismail, A.F. (2017) Chem. Eng. Res. Des,120: 218-230. 20 21. Gholami, M, Nasseri, S, Feng, C, Matsuura, T, and Khulbe, K. (2003) Desalination, 155: 293-301. 21 22. Jahad Sahel, Andry Y, Tramblay and Marc A Dube (2010) fuel, 89 : 2260-2266. 22 23. Jahed Sahel, Marc A,Dube,Andrey Y, Trembky (2011). Fuel Process Technol, 92(7) 1305-1310. 23
ORIGINAL_ARTICLE Theoretical and Experimental Methods for Studying Volumetric Behavior of Binary mixtures Containing Normal Alkanols In this paper, molecular interactions in the binary mixtures composed of a xylene and selected 1-alkanol (1-butanol up to 1-octanol) were investigated by measurement of the density at T= 323.15 K. From the experimental data, excess molar volumes were calculated. Obtained data were interpreted based on the type and magnitude of the physico-chemical interactions in the binary liquid systems. In this sense, PC-SAFT was used to correlate the volumetric behavior of binary mixtures. The correlated values of the model were satisfactory and the obtained data are within the uncertainty region. https://www.ajnanomat.com/article_63581_c54eb816d410ae1436f3bd8e55b5d94f.pdf 2018-07-01T11:23:20 2020-07-11T11:23:20 166 171 10.26655/ajnanomat.2018.6.7 Density 1-Alkanol PC-SAFT model Mohammad Almasi [email protected] true 1 Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, 65174, Iran. Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, 65174, Iran. Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, 65174, Iran. LEAD_AUTHOR 1. Parveen S, Shukla D, Singh S, Singh KP, Gupta M, Shukla JP (2009) Applied Acoustics, 70: 507–513 1 2. Iloukhani H, Almasi M (2011) Model. J. Solution Chem, 40: 284–298 2 3. Almasi M (2016) J. Therm. Anal. Calorim, 124: 399–405 3 4. Almasi M, Khosravi L (2012) J. Serb. Chem. Soc, 77: 363–370 4 5. Redlich OJ, Kister AT (1948) Ind. Eng. Chem, 40: 345–348 5 6. Gross J, Sadowski G (2001) Ind. Eng. Chem. Res, 40: 1244–1260 6 7. Gross J, Sadowski G (2002) Ind. Eng. Chem. Res. 41:5510–5515. 7