ORIGINAL_ARTICLE The study of range-scaling transformation of nanoparticle compounds on thin films of gold-centered monolayer protected nanoparticles by molecular modeling A quantitative structure–retention relation (QSRR) study was conducted on the range-scaling transformation (Xa) of the nanoparticle compounds which obtained by comprehensive two-dimensional gas chromatography (GC×GC) stationary phases consisting of thin films of the gold-centered monolayer protected nanoparticles (MPNs) system. The genetic algorithm was used as descriptor selection and model development method. Modeling of the relationship between the selected molecular descriptors and the retention time was achieved by linear (partial least square; PLS) and nonlinear (Levenberg-Marquardt artificial neural network; L-M ANN) methods. Linear and nonlinear methods resulted in an accurate prediction whereas more accurate results were obtained by L-M ANN model. https://www.ajnanomat.com/article_57276_220b3f93bb21b517ceb26ef51bb76ec5.pdf 2018-03-01T11:23:20 2020-07-12T11:23:20 1 10 10.26655/ajnanomat.2018.1.1 Nanoparticle compounds Gold-centered monolayer protected nanoparticles Comprehensive two-dimensional gas chromatography QSRR Levenberg-Marquardt artificial neural network Mehrdad Shahpar [email protected] true 1 Director of Ilam Petrochemical Company. Director of Ilam Petrochemical Company. Director of Ilam Petrochemical Company. LEAD_AUTHOR Sharmin Esmaeilpoor [email protected] true 2 Department of Chemistry, Payame Noor University, P.O. BOX 19395-4697, Tehran, Irann Department of Chemistry, Payame Noor University, P.O. BOX 19395-4697, Tehran, Irann Department of Chemistry, Payame Noor University, P.O. BOX 19395-4697, Tehran, Irann AUTHOR 1. Brown DB, Wilson MR, MacNee M (2001) Appl. Pharmacol 175: 191-199. 1 2. Inoue K, Takano H, Yanagisawa R, Sakurai M, Ichinose T, Sadakane K, Yoshikawa T (2001) Respir. Res 6:106-111. 2 3. Buzorius G, Zelenyuk A, Brechtel F, Imre D (2002) Geophys Res Let 29:1974–1978. 3 4. Chong-Shu Zhu, Cheng-Chieh Chen, Jun-Ji Cao, Chuen-Jinn Tsai, Ch.C.-K. Chou, Shaw-Chen Liu, Gwo-Dong Roam (2010) Atmos. Environ 44: 2668-2673. 4 5. Hang Ho Si, Zhen Yu J (2004) J. Chromatogr. A 1059: 121–129. 5 6. Dallüge J, Rijn M, Beens J, Vreuls RJJ, Brinkman UA (2002) J. Chromatogr. A 965:207-214. 6 7. Adam F, Bertoncini F, Brodusch N, Durand E, Thiebaut D, Espinat D, Hennion MC (2007) J. Chromatogr. A 1148: 55–64. 7 8. Hyölyläinen T, Kallio M, Shimmo M, Saamio K, Hartonen K, Riekkola ML (2003) Presentation at the First International Symposium on Two-Dimensional Gas Chromatography, Volendam, The Netherlands. 8 9. Muhlen C, Alcaraz Zini C, Bastos Caramao E, Marriott Ph (2008) J. Chromatogr. A1200: 34–42. 9 10. Hamilton JF, Webb PJ, Lewis AC, Hopkins JR, Smith S, Davy P (2004) Atmos. Chem. Phys 4: 1279-1290. 10 11. Ochiai N, Ieda T, Sasamoto K, Fushimi A, Hasegawa Sh, Tanabe K, Kobayashi Sh (2007) J. Chromatogr. A 1150: 13–20. 11 12. Leban J, Baierl M, Mies J, Trentinaglia V, Rath S, Kronthaler K, Wolf K (2007) Chem. Lett 17:5858–5862. 12 13. Gajewicz A, Haranczyk M, Puzyn T (2010) Atmos. Environ 44: 1428-1436 13 14. Niazi A, Jameh-Bozorghi S, Nori-Shargh D (2008) J. Hazard. Mater. 151: 603-609 14 15. Noorizadeh H, Esmaeilpoor Sh, Moghadam Z, Nosratolahy Sh (2014) ICC 4: 283-299 15 16. Woo SH, Jeon ChO, Yun YS, Choi H, Lee ChS, Lee DS (2009) J. Hazard. Mater 161: 538–544 16 17. Krämer N, Boulesteix AL, Tutz G (2008) Chemom. Intell. Lab. Syst 94: 60–69. 17 18. Todeschini R, Consonni V, Mauri A, Pavan M (2003) DRAGON-Software for the calculation of molecular descriptors. Version 3.0 for Windows. 18 19. Goldberg DE (2000) Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley–Longman, Reading, MA, USA. 19 20. Esmaeilpoor Sh, Shirzadi Z, Noorizadeh H (2014) Iran. Che. Commun., 2: 56-71. 20 21. Sousa JAD, Hemmer MC, Casteiger J (2002) Anal. Chem. 74, 80-88. 21 22. Depczynski U, Frost VJ, Molt K (2000) factors in principal component regression. Anal. Chim. Acta 420: 217-227. 22 23. Wold S, Sjostrom M, Eriksson L (2001) Lab. Syst 58: 109-114. 23 24. Shahpar M, Esmaeilpoor Sh (2017) Asian J. Green Chem 2: 116-129 24 25. Rosipal R, Trejo LJ (2001) J. Mach. Learning Res 2: 97-110. 25 26. Kim K, Lee JM, Lee IB (2005) Chemom. Intell. Lab. Syst 79: 22-30. 26 27. Acevedo-Martınez J, Escalona-Arranz JC, Villar-Rojas A, Tellez-Palmero F, Perez-Roses R, Gonzalez L, Carrasco-Velar R (2006) J. Chromatogr. A 1102: 238-244. 27 28. Shahpar M, Esmaeilpoor Sh (2017) Chem. Method., 98-120. 28 29. Golbraikh A, Tropsha A (2002) Beware of q2. J. Mol. Graphics Modell 20: 269-276. 29 30. Todeschini R, Consonni V (2000) Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, German 30
ORIGINAL_ARTICLE Silica supported-boron sulfonic acid: a versatile and reusable catalyst for synthesis of bis(indolyl)methane in solvent free and room temperature conditions Silica supported-boron sulfonic acid (SBSA) was used as a cheap and mild bronsted acidic in the reaction of indole with aldehydes to afford the corresponding bis(indolyl)methanesin in solvent free grinding and room temperature. The catalyst is also effective in the reaction in good yields. This methodology offers several advantages, such as good yields, reusability of catalyst, short reaction times, simple procedure, and mild conditions. The catalyst can be recovered and reused without loss of activity. The work-up of the reaction consists of a simple filtration, followed by concentration of the crude product and purification. https://www.ajnanomat.com/article_58120_228a5e6048cf58a741580a4d52712930.pdf 2018-03-01T11:23:20 2020-07-12T11:23:20 11 18 10.26655/ajnanomat.2018.1.2 Indole Bis(indolyl)methane Boron Sulfonic Acid Aldehyde Synthesis Sami Sajjadifar [email protected] true 1 Department of Chemistry, Payame Noor University, PO BOX 19395-4697 Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-4697 Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-4697 Tehran, Iran LEAD_AUTHOR Ghobad Mansouri [email protected] true 2 Department of Chemistry, Payame Noor University, PO BOX 19395-4697 Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-4697 Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-4697 Tehran, Iran AUTHOR Shefa Miraninezhad [email protected] true 3 Department of Chemistry, Payame Noor University, PO BOX 19395-4697 Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-4697 Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-4697 Tehran, Iran AUTHOR 1. George SM (1995) Chemical Reviews 953:475-476 1 2. Karimi B, Zareyee D (2008) Organic Letters 1018:3989-3992 2 3. Osawa T, Namiki M (1983) Tetrahedron letters 2443:4719-4722 3 4. Sajjadifar S, Rezayati S (2014) Chemical papers 684:531-539 4 5. J.R. Plimmer, D.W. Gammon, N.N. Ragsdale (2003), Encyclopedia of Argochemicals, vol. 3, John Wiley and Sons, New York. 5 6. Lo KK-W, Tsang KH-K, Hui W-K, Zhu N (2003) Chemical Communications21:2704-2705 6 7. Shiri M, Zolfigol MA, Kruger HG, Tanbakouchian Z (2009) Chemical reviews 1104:2250-2293 7 8. Sobhani S, Safaei E, Hasaninejad A-R, Rezazadeh S (2009) Journal of Organometallic Chemistry 69418:3027-3031 8 9. Yang Q, Yin ZL, Ouyang BL, Peng YY (2011) Chinese Chemical Letters 225:515-518 9 10. Sajjadifar S, Mirshokraie SA, Javaherneshan N, Louie O (2012) American Journal of Organic Chemistry 22:1-6 10 11. Sajjadifar S, Khosravani E, Shiri S (2013) International Journal of ChemTech Research 52:1969-1976 11 12. Zolfigol MA, Khazaei A, Mokhlesi M, Vahedi H, Sajadifar S, Pirveysian M (2012) Phosphorus, Sulfur, and Silicon and the Related Elements 1873:295-304 12 13. Zolfigol MA, Vahedi H, Massoudi A, Sajjadifar S, Louie O, Javaherneshan N (2011) Clinical Biochemistry 4413:S219 13 14. Sajjadifar S, Rezayati S (2013) International Journal of ChemTech Research 51964-1968 14 15. Sajjadifar S (2013) International Journal of ChemTech Research 5385-389 15 16. Azimi SC, Rad-Moghadam K (2015) Iranian Chemical Communication 3356-366 16 17. Moosavi-Zare AR, Pouraskar-Borazjani M, Naz Z (2014) Iranian Chemical Communication 2168-172 17 18. Sajjadifar S, Mohammadi-Aghdam S (2017) Asian Journal of Green Chemistry 11-15 18 19. Khorshidi A, Shariati S, Aboutalebi M, Mardazad N (2016) Iranian Chemical Communication 4476-482 19 20. Hassani H, Zakerinasab B, Nozarie A (2018) Asian Journal of Green Chemistry 359-69 20 21. Rezayati S, Erfani Z, Rezayati S, Hajinasiri R, Rekavandi M (2014) Iranian Chemical Communication 272-81 21 22. Mohammadi Zeydi M, Mahmoodi NOA, Ardeshiri Terogeni G (2017) Asian Journal of Green Chemistry 278-88 22 23. Vijender Reddy A, Ravinder K, Niranjan Reddy V, Venkateshwer Goud T, Ravikanth V, Venkateswarlu Y (2003) Synthetic communications 3321:3687-3694 23 24. eng X-F, Ji S-J, Wang S-Y (2005) Tetrahedron 6143:10235-10241 24 25. Yadav JS, Reddy BVS, Murthy CV, Kumar GM, Madan C (2001) Synthesis 200105:0783-0787 25 26. Deb ML, Bhuyan PJ (2006) Tetrahedron Letters 479:1441-1443 26 27. Yang YL, Wan NN, Wang WP, Xie ZF, De Wang J (2011) Chinese Chemical Letters 229:1071-1074 27 28. Bandgar BP, Bettigeri SV, Joshi NS (2004) Monatshefte für Chemie/Chemical Monthly 13510:1265-1273 28 29. Karthik M, Magesh C, Perumal P, Palanichamy M, Arabindoo B, Murugesan V (2005) Applied Catalysis A: General 2861:137-141 29 30. Zolfigol MA, Salehi P, Shiri M, Tanbakouchian Z (2007) Catalysis Communications 82:173-178 30
ORIGINAL_ARTICLE Green synthesis of nanosilver particles from extract of Dracocephalum Lindbergii We describe the synthesis of silver nanoparticles (Ag-NPs) using aqueous extract of Dracocephalum lindbergii . UV–visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray energy dispersive spectrophotometer (EDX) were performed to ascertain the formation of Ag-NPs. UV-visible absorption spectra of the reaction medium containing silver nanoparticles showed maximum absorbance at 416 nm. The XRD pattern revealed the crystalline structure of SNPs. The SEM analysis showed the size and shape of the nanoparticles. The environmental friendly method provides simple, easy and cost effective faster synthesis of nanoparticles than chemical methods and can be used in several areas such as food, medicine. https://www.ajnanomat.com/article_57714_bd7d08de42f6f913b6d74498e2624a43.pdf 2018-03-01T11:23:20 2020-07-12T11:23:20 19 24 10.26655/ajnanomat.2018.1.3 Green nanoscience Biological synthesis Dracocephalum lindbergii Nanotechnology Silver nanoparticle M. Halimi [email protected] true 1 Department of Chemistry, Payame Noor University, P.O. Box 19395-4697 Tehran, Iran Department of Chemistry, Payame Noor University, P.O. Box 19395-4697 Tehran, Iran Department of Chemistry, Payame Noor University, P.O. Box 19395-4697 Tehran, Iran LEAD_AUTHOR M. Nasrabadi [email protected] true 2 Department of Chemistry, Payame Noor University, P.O. Box 19395-4697 Tehran, Iran Department of Chemistry, Payame Noor University, P.O. Box 19395-4697 Tehran, Iran Department of Chemistry, Payame Noor University, P.O. Box 19395-4697 Tehran, Iran AUTHOR N. Soleamani [email protected] true 3 Department of Chemistry, Payame Noor University, P.O. Box 19395-4697 Tehran, Iran Department of Chemistry, Payame Noor University, P.O. Box 19395-4697 Tehran, Iran Department of Chemistry, Payame Noor University, P.O. Box 19395-4697 Tehran, Iran AUTHOR N. Rouhani [email protected] true 4 Department of Chemistry, Payame Noor University, P.O. Box 19395-4697 Tehran, Iran Department of Chemistry, Payame Noor University, P.O. Box 19395-4697 Tehran, Iran Department of Chemistry, Payame Noor University, P.O. Box 19395-4697 Tehran, Iran AUTHOR 1. Jiang HQ, Manolache S, Wong ACL, Denes FS (2004) J. Appl. Polym. Sci 93: 1411–1422. 1 2. Parikh DV, Fink T (2005) Text. Res. J 75:134–138. 2 3. Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R, (2004) Biomaterials 25:4383–4391. 3 4. Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, W., Winkelmann C (2004) Biomaterials 25:5547–5556. 4 5. Rupp ME, Fitzgerald T, Marion N, Helget V, Puumala S, Anderson JR, Fey PD (2004) Am. J. Infect. Control 32:445–450. 5 6. Ohashi S, Saku S, Yamamoto K, (2004) J. Oral Rehabil 31: 364–367. 6 7. Bosetti M, Massè A, Tobin E, Cannas M (2002) Biomaterials 23 : 887–892. 7 8. Lee HJ, Jeong SH, (2005) Text. Res. J 75: 551–556. 8 9. Dhillon GS, Brar SK, S. Kaur, Verma M (2012) Crit. Rev. Biotechnol 32:49–73. 9 10. Gericke M, Pinches A (2006) Hydrometallurgy 83: 132–140. 10 11. Jain D, Kumar Daima H, Kachhwaha S, Kothari SL (2009) Dig. J. Nanomater. Biostructures 4:557–563. 11 12. Logeswari P, Silambarasan S, Abraham J (2013) Sci. Iran 20:1049–1054. 12 13. Bhattacharya D, Gupta RK (2005) Crit. Rev. Biotechnol 25:199–204. 13 14. Korbekandi H, Iravani S, Abbasi S (2009) Crit. Rev. Biotechnol 29:279–306. 14 15. Anastas ZJ PT (2007) washington. 15 16. Dahl JA, Maddux BLS, Hutchison JE (2007) Chem. Rev 107:2228–2269. 16 17. Shankar SS, Rai A, Ahmad A, Sastry M (2004) J. Colloid Interface Sci 275:496–18. Raveendran P, Fu J, Wallen SL (2003) J. Am. Chem. Soc 125:13940–13941. 17 19. Dhuper S, Panda D, Nayak PL (2012) Nano Trends A J. Nanotechnol. Its Appl 13:16–22. 18 20. Kalishwaralal K, Deepak V, Ram Kumar Pandian S, Kottaisamy M, BarathManiKanth S, Kartikeyan B, Gurunathan S (2010) Colloids Surfaces B Biointerfaces 77:257–262. 19 21. Rechinger KH, (1982) Verlagsanstalt, Graz, Austria 218–231. 20 22. Zeng Q, Jin HZ, Fu JJ, Qin JJ, Hu XJ, Liu JH, Yan L, Chen M, Zhang WD (2010) Chem. Biodivers 7:1911–1929. 21 23. Cullity BD (1978) Addison-Wesley Publ. Co. Read. MA 100:105-279. 22 24. Gole A, Sainkar SR, Sastry M (2000) Chem. Mater 12:1234–1239. 23 25. Mulvaney P, (1996) Langmuir 12:788–800. 24 26. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) ChemBioChem 3:461–463. 25 27. Gonzalo J, Serna R, Solís J, Babonneau D, Afonso CN (2003) J. Phys. Condens. Matter 15:42. 26 28. Sondi I, Salopek-Sondi B (2004) J. Colloid Interface Sci 275:177–182. 27 29. Chen S,Webster S, Czerw R, Xu J, Carroll DL (2004) J. Nanosci. Nanotechnol 4:254–259. 28
ORIGINAL_ARTICLE Theoretical analysis of the retention behavior of pesticides and active pharmaceutical compounds in wastewater and river waters in liquid chromatography–quadrupole-time-of-flight mass spectrometry The pesticides and active pharmaceutical compounds in water can potentially causedamage, including theincreased cancer risk; liver, and kidney. A quantitative structure–retention relationship (QSRR) was developed using the partial least square (PLS), Kernel PLS (KPLS), and Levenberg-Marquardt artificial neural network (L-M ANN) approach for chemometrics study. The data contained retention time (RT) of the 87 pesticides and active pharmaceutical compounds in wastewater and river waters. Genetic algorithm was employed as a factor selection procedure for PLS and KPLS modeling methods. The results showed that, the GA-PLS descriptors are selected for L-M ANN. Finally a model with a low prediction error and a good correlation coefficient was obtained by L-M ANN. https://www.ajnanomat.com/article_57713_7a3bf566a75a38ab18060e741fb9d493.pdf 2018-03-01T11:23:20 2020-07-12T11:23:20 25 35 10.26655/ajnanomat.2018.1.4 Water Pollution Organic contaminants Pesticides Pharmaceuticals LC–QTOFMS Mehrdad Shahpar [email protected] true 1 Director of Ilam Petrochemical Company Director of Ilam Petrochemical Company Director of Ilam Petrochemical Company AUTHOR Sharmin Esmaeilpoor [email protected] true 2 Department of Chemistry, Payame Noor University, P.O. BOX 19395-4697, Tehran, Iran Department of Chemistry, Payame Noor University, P.O. BOX 19395-4697, Tehran, Iran Department of Chemistry, Payame Noor University, P.O. BOX 19395-4697, Tehran, Iran AUTHOR 1. Ayandiran TA., Fawole OO, Dahunsi SO (2018) Res. Ind 19:13-24 1 2. Wijesiri B, Deilami K, Goonetilleke A (2018) Environ. Pollut 234:480-486 2 3. You D, Min X, Liu L, Ren Zh, Xiao X, Luo J, Luo X (2018) J. Hazard. Mater 346:218-225 3 4. Zhu J, Yi X, Zhang J, Chen Sh, Wu Y (2018) J. Pharm. Biomed. Anal 151: 42-48 4 5. Noorizadeh H, EsmaeilpoorSh, Moghadam Z, NosratolahySh (2014) ICC 4: 283-299 5 6. EsmaeilpoorSh, Shirzadi Z, Noorizadeh H (2014) ICC 2: 56-71. 6 7. Shahpar M, EsmaeilpoorSh (2017) Asian J. Green Chem 2: 116-129 7 8. R. Todeschini, V. Consonni, A. Mauri, M. Pavan M, DRAGON-Software for the calculation of molecular descriptors; Version 3.0 for Windows, 2003. 8 9. Gómez MJ, Gómez-Ramos MM, Malato O, Mezcua M, Férnandez-Alba AR (2010) J. Chromat. A 1217:7038–7054. 9 10. Shahpar M, Esmaeilpoor Sh (2018) Asian J. Nano. Mat. 1: 1-11 10 11. Shahpar M, EsmaeilpoorSh Chem. Method. Articles in Press 11
ORIGINAL_ARTICLE Facile green synthesis of fluorescent carbon quantum dots from citrus lemon juice for live cell imaging Facile and green one pot hydrothermal method was used for synthesis of fluorescent carbon quantum dots (CQDs) using citrus lemon juice as precursor. The synthesized CQDs were characterized using UV–Vis spectrophotometer, fluorescence spectrometer, transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), field emission scanning electron microscope equiped with energy dispersive X-ray spectroscopy (FESEM-EDS) and fluorescence microscopy. The obtained CQDs have high photoluminescence of 10.20% quantum yield. The photoluminescence intensity of CQDs depends on pH of the solution and maximum intensity obtained at pH of 6. The particle size of the carbon dots were distributed in narrow range of 2–10 nm with an average of 5.8 nm. The highly water soluble CQDs have high cell viability even at high concentration which rich up to 85%. MTT assay was used to investigate the potential application of CQDs and the results indicated that the material can be used as florescent probe in the cell imaging. https://www.ajnanomat.com/article_57712_c180ebf10d888464520073be893327fb.pdf 2018-03-01T11:23:20 2020-07-12T11:23:20 36 46 10.26655/ajnanomat.2018.1.5 carbon quantum dots citrus lemon juice fluorescent Hydrothermal method cell imaging Aschalew Tadesse [email protected] true 1 Department of Inorganic and Analytical chemistry, Andhra University, Visakhapatnam-530003, India | Department of Applied Chemistry, AdamaScience and Technology University, 1888, Ethiopia Department of Inorganic and Analytical chemistry, Andhra University, Visakhapatnam-530003, India | Department of Applied Chemistry, AdamaScience and Technology University, 1888, Ethiopia Department of Inorganic and Analytical chemistry, Andhra University, Visakhapatnam-530003, India | Department of Applied Chemistry, AdamaScience and Technology University, 1888, Ethiopia AUTHOR Dharmasoth Rama Devi [email protected] true 2 AU College of Pharmaceutical Science, Andhra University, Visakhapatnam-530003, India AU College of Pharmaceutical Science, Andhra University, Visakhapatnam-530003, India AU College of Pharmaceutical Science, Andhra University, Visakhapatnam-530003, India AUTHOR Mebrahtu Hagos [email protected] true 3 Department of Inorganic and Analytical chemistry, Andhra University, Visakhapatnam-530003, India | Faculty of Natural and Computational Sciences, Woldia University, 400, Ethiopia Department of Inorganic and Analytical chemistry, Andhra University, Visakhapatnam-530003, India | Faculty of Natural and Computational Sciences, Woldia University, 400, Ethiopia Department of Inorganic and Analytical chemistry, Andhra University, Visakhapatnam-530003, India | Faculty of Natural and Computational Sciences, Woldia University, 400, Ethiopia AUTHOR Gangarao Battu [email protected] true 4 AU College of Pharmaceutical Science, Andhra University, Visakhapatnam-530003, India AU College of Pharmaceutical Science, Andhra University, Visakhapatnam-530003, India AU College of Pharmaceutical Science, Andhra University, Visakhapatnam-530003, India AUTHOR Keloth Basavaiah [email protected] true 5 Department of Inorganic and Analytical chemistry, Andhra University, Visakhapatnam-530003, India Department of Inorganic and Analytical chemistry, Andhra University, Visakhapatnam-530003, India Department of Inorganic and Analytical chemistry, Andhra University, Visakhapatnam-530003, India LEAD_AUTHOR 1. X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker and W. A. Scrivens (2004) J. Am. Chem. Soc. 126: 12736–12737. 1 2. Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. Shiral Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. Monica Veca and S.-Y. Xie (2006) J. Am. Chem. Soc. 128: 7756–7757. 2 3. S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang and B. Yang (2015) Nano Res. 8: 355–381. 3 4. Q. Liang, W. Ma, Y. Shi, Z. Li and X. Yang (2013) Carbon. 60: 421–428. 4 5. J. Zhou, X. Shan, J. Ma, Y. Gu, Z. Qian, J. Chen and H. Feng (2014) RSC Adv. 4: 5465. 5 6. H. Yukawa, R. Tsukamoto, A. Kano, Y. Okamoto, M. Tokeshi, T. Ishikawa, M. Mizuno, and Y. Baba (2013) J. Cell Sci. Ther. 43:1 6 7. H. Ding, L.-W. Cheng, Y.-Y. Ma, J.-L. Kong and H.-M. Xiong (2013) New J. Chem. 37: 2515. 7 8. X. Yang, Y. Wang, X. Shen, C. Su, J. Yang, M. Piao, F. Jia, G. Gao, L. Zhang and Q. Lin (2017) J. Colloid Interface Sci. 492: 1–7. 8 9. L. Cao, S.-T. Yang, X. Wang, P. G. Luo, J.-H. Liu, S. Sahu, Y. Liu and Y.-P. Sun (2012) Theranostics 2: 295–301. 9 10. F. Wu, H. Su, K. Wang, W.-K. Wong and X. Zhu (2017) Int. J. Nanomedicine 12: 7375–7391. 10 11. T. N. J. I. Edison, R. Atchudan, M. G. Sethuraman, J.-J. Shim and Y. R. Lee (2016) J. Photochem. Photobiol. B 161: 154–161. 11 12. J. Wei and J. Qiu (2014) Adv. Eng. Mater. 17: 138–142. 12 13. R. Jelinek (2016) Carbon Quantum Dots: Synthesis, Properties and Applications, Springer. 13 14. H. M. R. Gonçalves, A. J. Duarte and J. C. G. Esteves da Silva (2010) Biosens. Bioelectron. 26: 1302–1306. 14 15. Z. Yan, J. Shu, Y. Yu, Z. Zhang, Z. Liu and J. Chen (2015) Luminescence 30: 388–392. 15 16. D. Kumar, K. Singh, V. Verma and H. S. Bhatti (2014) Journal of Bionanoscience 8: 274–279. 16 17. A. Sachdev and P. Gopinath (2015) Analyst 140: 4260–4269. 17 18. A. Prasannan and T. Imae (2013) Ind. Eng. Chem. Res. 52: 15673–15678. 18 19. Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin and G. Chen (2012) Carbon 50: 4738–4743. 19 20. S. Lu, S. Guo, P. Xu, X. Li, Y. Zhao, W. Gu and M. Xue (2016) Int. J. Nanomedicine. 11: 6325–6336. 20 21. A. Rauf, G. Uddin and J. Ali (2014) Org. Med. Chem. Lett. 4: 5. 21 22. K. L. Penniston, S. Y. Nakada, R. P. Holmes and D. G. Assimos (2008) J. Endourol. 22: 567–570. 22 23. D. Magde, G. E. Rojas and P. G. Seybold (1999) Photochem. Photobiol. 70: 737. 23 24. Z. S. Qian, L. J. Chai, Y. Y. Huang, C. Tang, J. J. Shen, J. R. Chen and H. Feng (2015) Biosens. Bioelectron. 68: 675–680. 24 25. A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides and E. P. Giannelis (2008) Small 4: 455–458. 25 26. K. A. S. Fernando, S. Sahu, Y. Liu, W. K. Lewis, E. A. Guliants, A. Jafariyan, P. Wang, C. E. Bunker and Y.-P. Sun (2015) ACS Appl. Mater. Interfaces 7: 8363–8376. 26 27. S. N. Baker and G. A. Baker (2010) Angew. Chem. Int. Ed Engl. 49: 6726–6744. 27 28. Y. Shi, Y. Pan, H. Zhang, Z. Zhang, M.-J. Li, C. Yi and M. Yang (2014) Biosens. Bioelectron. 56: 39–45. 28 29. P. Liu, C. Zhang, X. Liu and P. Cui (2016) Appl. Surf. Sci. 368: 122–128. 29 30. K. Dimos (2016) Curr. Org. Chem. 20: 682–695. 30 31. Q.-Y. Cai, J. Li, J. Ge, L. Zhang, Y.-L. Hu, Z.-H. Li and L.-B. Qu (2015) Biosensors and Bioelectronics 72: 31–36. 31 32. L. Tian, D. Ghosh, W. Chen, S. Pradhan, X. Chang and S. Chen (2009) Chem. Mater. 21: 2803–2809. 32 33. S. Zhu, X. Zhao, Y. Song, S. Lu and B. Yang (2016) Nano Today 11: 128–132. 33 34. A. Hao, X. Guo, Q. Wu, Y. Sun, C. Cong and W. Liu (2016) J. Lumin. 170: 90–96. 34 35. R. Jelinek (2016) Carbon Nanostructures 29–46. 35
ORIGINAL_ARTICLE Mathematical Properties and Computations of Banahatti indices for a Nano-Structure "Toroidal Polyhex Network" Abstract: Let G be the connected graph with vertex set V(G) and edge set E(G).The first and second K Banhatti indices of G are defined as B1(G)=Σue[dG (u) +dG (e)] and B2(G)=Σue[dG (u) +dG (e)] where ue means that the vertex u and edge e are incident in G.The first and second K hyper Banhatti indices of G are defined as HB1(G) = Σue[dg(u) + dG (e)]2 and HB2(G) = Σue[dg(u) dG (e)]2 respectively . In this paper, we compute the first and second K Banhatti indices of toroidal polyhex network. In addition, the first and second K hyper Banhatti indices of toroidal polyhex networks are determined. Keywords: Topological index, Banhatti index, Network. https://www.ajnanomat.com/article_58128_46c1108124798e40eb03f99aa3836c03.pdf 2018-03-01T11:23:20 2020-07-12T11:23:20 47 51 10.26655/ajnanomat.2018.1.6 topological index Banhatti index network Shama Firdous [email protected] true 1 Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan AUTHOR Waqas Nazeer [email protected] true 2 Divisionof Science and Technology, University of Education, Lahore, 54000, Pakistan Divisionof Science and Technology, University of Education, Lahore, 54000, Pakistan Divisionof Science and Technology, University of Education, Lahore, 54000, Pakistan AUTHOR Mohammad Reza Farahani [email protected] true 3 Department of Applied Mathematics of Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran Department of Applied Mathematics of Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran Department of Applied Mathematics of Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran LEAD_AUTHOR West D B(1996) An Introduction to Graph Theory. Prentice-Hall. 1 Rucker G, Rucker C (1999) J. Chem. Inf. Comput. Sci. 39, 788–802. 2 Klavžar S, Gutman I (1996). J. Chem. Inf. Comput. Sci. 36, 1001–1003. 3 Sardar MS, Zafar S, Farahani MR (2017) Open J. Math. Sci., 1(1), (2017), 44 – 51. 4 Rehman HM, Sardar R, Raza A (2017) Open J. Math. Sci., 1(1), (2017), 62 - 71. 5 Kulli VR, Chaluvaraju B, Boregowda HS (2017) Journal of Ultra Chemistry, 13(4), 81-87. 6 Deza M, Fowler PW, Rassat A, Rogers KM (2000) J. Chem. Inf. Comput. Sci, 40, 550–558. 7 Kirby EC, Pollak P (1998) J. Chem. Inf. Comput. Sci, 38, 1256–1256. 8 Beuerle F, Herrmann C, Whalley AC, Valente C, Gamburd A, Ratner MA, Stoddart JF (2011) Chem. Eur. J, 17, 3868-3875. 9 Ye D, Qi Z, Zhang H (2009) SIAM J. Discret. Math. 23, 1023–1044. 10 Kang MH (2011) Discret. Math. 311, 2384–2395. 11 Baca M, Horvathova J, Mokrisova M, Suhanyiova A (2015) Appl. Math. Comput. 251, 154–161. 12 Mehranian Z, Ashrafi AR (2016) Springer International Publishing: Cham, Switzerland, 281–301. 13 Ernesto E, Matamala AR (2008) J. Math. Chem. 43, 508–517. 14 Yang H, Sajjad W, Baig AQ, Farahani MR (2017) International Journal of Advanced Biotechnology and Research. 8(2), 1582-1589. 15 Huo Y, Liu JB, Baig AQ, Sajjad W, Farahani MR (2017). Journal of Computational and Theoretical Nanoscience. 14(4), 1832–1836. 16 Dhavaseelan R, Baig AQ, Sajjad W, Farahani MR (2017) Journal of Informatics and Mathematical Sciences. 9(1), 201–215. 17 Rezaei M, Baig AQ, Sajjad W, Farahani MR (2016). International Journal of Pure and Applied Mathematics. 111(3), 467-477. 18 Farahani MR, Baig AQ, Sajjad W, Ramane HS (2018) International Journal of Advances in Mathematics. 1, 101-108. 19 Gao W, Shi L, Farahani MR (2017) Journal of Discrete Mathematical Sciences and Cryptography, 20(2), 553-563. 20 Farahani MR (2012) Acta Chim. Slov. 59, 779–783. 21 Farahani MR (2012) Sci-Afric Journal of Scientific Issues, Research and Essays. 2(12), 567-570, 2014. 22 Gao Y., Farahani M.R., Nazeer W (2018) Chemical Methodologies. 3, 39-45. 23