ORIGINAL_ARTICLE Electrochemical reduction of CO2 using cuprous oxide particles supported on carbon paper substrate Electrochemical reduction of CO2 is so important in mitigating the greenhouse related environmental concerns. Recently, oxidized forms of metals instead of pure metals have gained a great deal of attention due to the difference in product selection between the two classes of electrode materials. Since copper has been widely used in producing carbon-intensive products, various studies have been dedicated to evaluate its oxidized form. In this research study, we focused on using cuprous oxide particles supported on hydrophobic carbon paper substrate. The structure of the carbon paper provides unique reaction sites while the micron-sized particles can help to provide new insight about using smaller surface area to volume ratio as compared to previous reports on oxidized copper nanoparticles. Formic acid, ethylene, and CO were produced as a result of our experiments which show improved product selection compared with the pure copper nanoparticles. The potential and time dependence of these products are presented in this study along with a discussion on the origin of CO2 reduction. https://www.ajnanomat.com/article_96793_daba7a16c18ac67fa4f222ff5078b93a.pdf 2020-04-01T11:23:20 2020-07-11T11:23:20 93 102 10.26655/AJNANOMAT.2020.2.1 CO2 reduction Electrocatalysis Cuprous oxide Ethylene Formic acid Fahd Khan [email protected] true 1 Department of Advance Interdisciplinary Studies, School of Engineering, University of Tokyo, Japan Department of Advance Interdisciplinary Studies, School of Engineering, University of Tokyo, Japan Department of Advance Interdisciplinary Studies, School of Engineering, University of Tokyo, Japan LEAD_AUTHOR Masakazu Sugiyama [email protected] true 2 Department of Advance Interdisciplinary Studies, School of Engineering, University of Tokyo, Japan Department of Advance Interdisciplinary Studies, School of Engineering, University of Tokyo, Japan Department of Advance Interdisciplinary Studies, School of Engineering, University of Tokyo, Japan AUTHOR Katsushi Fujii [email protected] true 3 Nakamura Laboratory, Research Cluster for Innovation, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan Nakamura Laboratory, Research Cluster for Innovation, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan Nakamura Laboratory, Research Cluster for Innovation, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan AUTHOR Yoshiaki Nakano [email protected] true 4 Department of Electrical Engineering, School of Engineering, University of Tokyo, Japan Department of Electrical Engineering, School of Engineering, University of Tokyo, Japan Department of Electrical Engineering, School of Engineering, University of Tokyo, Japan AUTHOR [1]. Kumar B., Brian J., Atla V., Kumari S., Bertram K., White R., Spurgeon J. Catal. Today, 2016, 270:19 1 [2]. Hori Y., Modern Aspects of Electrochemistry, Springer, New York, 2008, pg 89 2 [3]. Kuhl K., Cave E., Abram D., Jaramillo T. Energy Environ Sci., 2008, 5:7050 3 [4]. Luna P.D., Quintero-Bermudez R., Dinh C., Ross M.B., Bushuyev O.S.,Todorovic P., Regier T., Kelley S., Yang P., Sargent E. Nat. Catal., 2018, 1:103 4 [5]. Lee C.W., Yang K.D., Nam D.H., Jang J.H., Cho N.H., Im S.W., Nam K.T. Adv. Mater., 2018, 30:1704717 5 [6]. Chen C., Sun X., Lu L., Yang D., Ma J., Zhu Q., Qian Q., Han B. Green Chem., 2018, 20:4579 6 [7]. Seunghwa L., Dahee K., and Jaeyoung L., Angew. Chem. Int. Ed., 2015, 54:14701 7 [8]. Frese K.W. Journal of Electrochemical Society, 1991, 138:3338 8 [9]. Le M., Ren M., Zhang Z., Sprunger P. T., Kurtz R. L., Flake J.C. Journal of the Electrochemical Society, 2011, 158:45 9 [10]. Li C.W., Kanan M.W. Journal of the American Chemical Society, 2012, 134:7231 10 [11]. Wang W., Ning H., Yang Z., Feng Z., Wang J., Wang X., Mao Q., Wu W., Zhao Q., Hu H., Song Y., Wu M. Electrochimica Acta, 2019, 306:360 11 [12]. Tan X., Yu C., Zhao C., Huang H., Yao X., Han X., Guo W., Cui S., Huang H., Qiu J. ACS Appl. Mater. Interfaces, 2019, 11:9904 12 [13]. Lee S., Ocon J. D., Son Y., Lee J. J. Phys. Chem. C., 2015, 119:4884 13 [14]. Kim D., Lee S., Ocon J. D., Jeong B., Lee J. K., Lee J., Phys. Chem. Chem. Phys., 2015, 17:824 14 [15]. Lum Y., Ager J.W. Angew. Chem. Int. Ed., 2018, 57:551 15 [16]. Eilert A., Cavalca F., Roberts F.S., Osterwalder J., Liu C., Favaro M., Crumlin E.J., Ogasawara H., Friebel D., Pettersson L.G., Nilsson A. J. Phys. Chem. Lett., 2018, 8:285 16 [17]. Burdyny T., Smith W.A. Energy Environ. Sci., 2019, 12:1442 17 [18]. Kas R., Kortlever R., de Wit P., Milbrat A., Luiten-Olieman M., Benes N., Koper M., Mul G. Nature Communications, 2016, 7:10748 18 [19]. Hana X., Wang M., Linh M., Bedford N., Woehl T., Thoi S. Electrochimica Acta, 2019, 297:545 19 [20]. Lee S., Kim D., Lee J. Angew. Chem. Int. Ed. Engl., 2015, 54:14701 20 [21]. Ren D., Ang BS-H., Yeo B.S. ACS Catalysis, 2016, 6:8239 21 [22]. Li C.W., Ciston J., Kanan M.W. Nature, 2014, 508:504 22 [23]. Kim D., Kley C.S., Li Y., Yang P. PNAS., 2017, 114:10560. 23 [24]. Ning H., Mao Q., Wang W, Yang Z., Wang X., Zhao Q., Song Y., Wu M. Journal of Alloys and Compounds, 2019, 785:7 24 [25]. Dang T., Le, T, Blanc E.F, Dang M. Adv. Nat. Sci. Nanosci. Nanotechnol., 2011, 2:15009 25 [26]. John W., Ayi A., Chinyere A., Providence A., Bassey I. Advanced Journal of Chemistry-Section A., 2019, 2:175 26 [27]. Gomaa E., Abdel H., Mahmoud M., El Kot D. Adv. J. Chem. A., 2019, 2:1 27 [28]. Ayesha K., Audi R., Rafia Y., Ren C. Int. Nano Lett., 2016, 6:21 28 [29]. Sachin S., Ashok B., Chandrashekhar M. J. Nano Electron. Phys., 2016, 8:01035 29 [30]. Chang T., Liang R., Wu P. Chen J.Y., Hsieh Y.C. Material Letters, 2009, 63:1001 30 [31]. Hori Y., Murata A., Takahashi R., Suzuki S. Chem. Lett., 1987, 16:1665 31 [32]. Hori Y., Murata A., Takahashi R. J. Chem. Soc., Faraday Trans., 1989, 85:2309 32 [33]. Bugayonga J., Griffin G.L. ECS Trans., 2013, 588:81 33 [34]. Wanatabe M., Shibata M., Kato A., Azuma M., Sakata T. J. Electrochem. Soc., 1991, 138:3382 34 [35]. Kim J.Y., Rodriguez J.A., Hanson J.C., Frenkel A.I., Lee P. J. Am. Chem. Soc., 2003, 125:10684 35 [36]. Maimaiti Y., Nolan M., Elliott S. Phys. Chem. Chem. Phys., 2014, 16:3036 36 [37]. Kooti M., Matouri L. Transaction F: Nanotechnology, 2010, 17:73 37 [38]. Zhang X., Lu X., Shen Y., Han J., Yuan L., Gong L., Xu Z., Bai X., Wei M., Tong Y., Gao Y., Chen J., Zhou J., Wang L.Z. Chem. Commun., 2011, 47:5804 38 [39]. Mandal L., Yang K.R., Motapothulav M.R,. Ren D., Lobaccaro P., Patra A., Sherburne M., Batista V.S., Yeo B.S., Ager J.W., Martin J. Venkatesan T. ACS Appl. Mater. Interfaces, 2018, 10:8574 39 [40]. Jeremy T., Chuan S., Etosha R., Toru H., David N., Kendra P., Christopher H., Nørskov J., Jaramillo T. ACS Catal., 2017, 7:4822 40 [41]. Peterson A.A., Abild-Pedersen F., StudtF., Rossmeisl J., Nørskov J. Energy Environ. Sci. 2010, 3:1311 41 [42]. Shin H.S., Song J.Y., Jiang Y., Mater. Lett. 2009, 63:39 42 [43]. Hori Y., Takahashi I., Koga O, Hoshi N. Journal of Physical Chemistry, 2002, 106:15 43 [44]. Baturina O., Lu Q., Padilla M., Le X., Li W., Serov A., Artyushkova K., Atanassov P., Xu F., Epshteyn A., Brintlinger T., Schuette M., Collins G. ACS Catal., 2014, 4:3682 44 [45]. Reske R., Mistry H., Behafarid F., Cuenya B.R., Strasser P. J. Am. Chem. Soc., 2014, 136:6978 45 [46]. Ko C., Lee W. Surf. Interface Anal., 2010, 42:1128 46 [47]. Meenesh R., Singha L., Clarka, B., Bella A. PNAS, 2015, 112:6111 47
ORIGINAL_ARTICLE Adsorption of TNT on the surface of pristine and N-doped carbon nanocone: A theoretical study In this research, the performance of the carbon nanocone as an adsorbent and a sensing material for the removal and detection of trinitrotoluene (TNT) was investigated using the density functional theory. The atomic structures of TNT and its complexes with carbon nanocone were optimized geometrically. Infra-red (IR) and frontier molecular orbital computations were employed to evaluate the interaction of TNT with the carbon nanocone. The obtained negative values of adsorption energies, Gibbs free energy changes, adsorption enthalpy variations and great values of thermodynamic equilibrium constants revealed that the interaction of the TNT with carbon nanocone was exothermic, spontaneous and experimentally feasible. The effect of the nitrogen doping and temperature on the adsorption process was also evaluated and the results indicated that TNT interaction with N-doped carbon nanocone was stronger than that of pristine one. In addition, 298 K was the optimum temperature for the adsorption process. The specific heat capacity values revealed that the heat sensitivity was declined tangibly after the TNT adsorption on the surface of carbon nanocone. Besides, the frontier molecular orbital parameters such as bandgap, electrophilicity, maximum transferred charge proved that the carbon nanocone could be utilized as an excellent sensing material for the construction of new electrochemical sensors for TNT determination. Some structural and energetic features were also discussed in details. https://www.ajnanomat.com/article_101247_bdb5a8ed33429f4fee5274da237ea967.pdf 2020-04-01T11:23:20 2020-07-11T11:23:20 103 114 10.26655/AJNANOMAT.2020.2.2 TNT carbon Nanocone Adsorption Density functional theory explosives Mohammad Reza Jalali Sarvestani [email protected] true 1 Young Researchers and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran Young Researchers and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran Young Researchers and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran AUTHOR Roya Ahmadi [email protected] true 2 Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran LEAD_AUTHOR [1]. Yang Q., Liang Y., Zhou T., Shi G., Jin L. Electrochem Commun., 2008, 10:1176 1 [2]. Carrion C.C., Simonet B.M., Valcarcel M. Anal Chim Acta., 2013, 792:93 2 [3]. Heiss C., Weller M.G., Niessner R. Anal Chim Acta., 1999, 396:309 3 [4]. Zimmermann Y., Broekaert J.A.C. Anal Bioanal Chem., 2005, 383:998 4 [5]. Tredici I., Merli D., Zavarise F., Profumo A. J Electroanal Chem., 2010, 645:22 5 [6]. Hundal L.S., Singh J., Bier E.L., Shea P.J., Comfort S.D., Powers W.L. Environ Pollut., 1997, 97:55 6 [7]. Alizadeh T., Zare M., Ganjali M.R., Norouzi P., Tavana B. Biosens Bioelectron., 2010, 25:1166 7 [8]. Ercag E., Uzer A., Apak R. Talanta., 2009, 78:772 8 [9]. Won W.D., Disalvo L.H., James N.G. Appl Environ Microbiol., 1976, 31:576 9 [10]. Saravanan N.P., Venugopalan S., Senthilkumar N., Santhosh P., Kavita B., Prabu H.G. Talanta., 2006, 69:656 10 [11]. Ahmadi R., Ebrahimikia M. Phys Chem Res., 2017, 4:617 11 [12]. Yu X., Tverdal M., Raaen S., Helgesen G., Knudsen K.D. Appl Surf Sci., 2008, 255:1906 12 [13]. Mohasseb A. Int J New Chem., 2019, 6:215 13 [14]. Vessally E., Behmagham F., Massoumi B., Hosseinian A., Edjlali L. Vacuum., 2016, 134:40 14 [15]. Baei M.T., Peyghan A.A., Bagheri Z. Struct Chem., 2013, 24:1099 15 [16]. Ahmadi R., Jalali Sarvestani M.R., Taghavizad R., Rahim N. Chem Methodol., 2020, 4:68 16 [17]. Razavi R., Eghtedaei R., Rajabzadeh H., Najafi M. Inorg Chem Commun., 2018, 94:85 17 [18]. Rastegar S.F., Soleymanabadi H., Bagheri Z. J Iran Chem Soc., 2015, 12:1099 18 [19]. Yu X., Raeen S. J Appl Phys., 2015, 118:10 19 [20]. Jalali Sarvestani M.R., Ahmadi R. J Water Environ Nanotechnol.,2019, 4:48 20 [21]. Parlak C., Alver O. J Mol Struct., 2019, 1198:126881 21 [22]. Todde G., Jha S.K., Subramanian G., Shukla M.K. Surf Sci., 2018, 668:54 22 [23]. Van B.N., Nikolaeva E.V., Shamov A.G., Khrapkovskii G.M., Tsyshevsky, R.V. ‏Int J Mass Spectrom., 2015, 392:7 23 [24]. Enlow M.A. J Mol Graph Model., 2012, 33:12 24 [25]. Hang G.Y., Yu W.L., Wang T., Wang J.T. Comput Mater Sci., 2019, 156:77 25 [26]. Sriyab S., Lat K.J., Prompinit P., Wolschann P., Hannongbua S., Suramitr S. J Lumin., 2018, 203:492 26 [27]. Ghosh P., Das J., Basak A., Mukhopadhyay S.K., Banerjee P. Sens Actuators B Chem., 2017, 251:985 27 [28]. Anbu V., Vijayalakshmi K.A., Karunathan R., Stephen A.D., Nidhin P.V. Arab J Chem., 2019, 12:621 28 [29]. Jaridann M., Roy S., Rachid H.A., Lussier L.S. J Hazard Mater., 2010, 176:165 29 [30]. Hernández-Riveraa S.P., Castillo-Chará J. Vib Spectrosc., 2010, 53:248 30 [31]. Gaussian 16, Revision C.01, Frisch M. J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V.Petersson,, G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J., Gaussian, Inc., Wallingford CT, 2016 31 [32]. Ghiasi R., Kanani F.A.K., Asian J. Nanosci. Mater., 2018, 1:234 32 [33]. Ghiasi R., Bharifar H., Hosseinzade S., Zarinfard M.A., Hakimyoun A.H., J. Appl. Chem. Res., 2014, 8: 29 33 [34]. Ghiasi R., Fashami M.Z., Hakimioun A.H., J. Theor. Comput. Chem., 2014, 13:123 34 [35]. Alavi H., Ghiasi R., Ghazanfari D., Akhgar M.R., Rev. Roum. Chim., 2014, 59: 883 35 [36]. Alavi H., Ghiasi R., J. Struct. Chem., 2017, 58: 30 36 [37]. Ghiasi R., Sadeghi N., J. Theor. Comput. Chem., 2017, 16: 1750007 37 [38]. Kazemi Z., Ghiasi R., Jamehbozorgi S., J. Struct. Chem., 2018, 59: 1044 38
ORIGINAL_ARTICLE Biosynthesis of calcium oxide nanoparticles using Ocimum sanctum (Tulsi) leaf extracts and screening its antimicrobial activity In this study, waste egg scale and inexpensive biowaste were employed to remove calcium ions. The potential of egg scales for removal of calcium ions from aqueous solutions was investigated. Preparation of calcinated egg shell powder, tulsi leaf extract, nanoparticle, and growth of bacteria were done to study biosynthesis of calcium oxide nanoparticle onto waste egg scales. Development of green nanotechnology has attracted a great deal of attention from researchers towards eco-friendly biosynthesis of nanoparticle. In this study, biosynthesis of stable calcium nanoparticles was conducted using tulsi (Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized using X-ray diffraction (XRD) analysis. The results revealed that, O.sanctum leaf extract can reduce Ca-ions into calcium oxide nanoparticles within 40 min of reaction time. It was found that, this method can be used for rapid and eco-friendly biosynthesis of stable calcium oxide nanoparticles with the size ranging from 40 to 70 nm. https://www.ajnanomat.com/article_101257_71e44f0a7a4d96e1150f4e54cd506d14.pdf 2020-04-01T11:23:20 2020-07-11T11:23:20 115 120 10.26655/AJNANOMAT.2020.2.3 Calcium oxide Ocimum sanctum Antimicrobial activity Vijay L. Gurav [email protected] true 1 Department of Chemistry K.C. College,Charchgate, Mumbai Maharashtra (India)-400020 Department of Chemistry K.C. College,Charchgate, Mumbai Maharashtra (India)-400020 Department of Chemistry K.C. College,Charchgate, Mumbai Maharashtra (India)-400020 LEAD_AUTHOR Rajesh A. Samant [email protected] true 2 Department of Chemistry K.C. College,Charchgate, Mumbai Maharashtra (India)-400020 Department of Chemistry K.C. College,Charchgate, Mumbai Maharashtra (India)-400020 Department of Chemistry K.C. College,Charchgate, Mumbai Maharashtra (India)-400020 AUTHOR Satish B. Manjare [email protected] true 3 Department of Chemistry, Ratnagiri Sub-centre, University of Mumbai P-61 MIDC Mirjole Ratnagiri (M. S.) India 415639 Department of Chemistry, Ratnagiri Sub-centre, University of Mumbai P-61 MIDC Mirjole Ratnagiri (M. S.) India 415639 Department of Chemistry, Ratnagiri Sub-centre, University of Mumbai P-61 MIDC Mirjole Ratnagiri (M. S.) India 415639 AUTHOR Urmila K. Patil [email protected] true 4 Department of Chemistry, Ratnagiri Sub-centre, University of Mumbai P-61 MIDC Mirjole Ratnagiri (M. S.) India 415639 Department of Chemistry, Ratnagiri Sub-centre, University of Mumbai P-61 MIDC Mirjole Ratnagiri (M. S.) India 415639 Department of Chemistry, Ratnagiri Sub-centre, University of Mumbai P-61 MIDC Mirjole Ratnagiri (M. S.) India 415639 AUTHOR Sana R. Solkar [email protected] true 5 Department of Chemistry, Ratnagiri Sub-centre, University of Mumbai P-61 MIDC Mirjole Ratnagiri (M. S.) India 415639 Department of Chemistry, Ratnagiri Sub-centre, University of Mumbai P-61 MIDC Mirjole Ratnagiri (M. S.) India 415639 Department of Chemistry, Ratnagiri Sub-centre, University of Mumbai P-61 MIDC Mirjole Ratnagiri (M. S.) India 415639 AUTHOR Shivani S. Moghe [email protected] true 6 Department of Chemistry, Ratnagiri Sub-centre, University of Mumbai P-61 MIDC Mirjole Ratnagiri (M. S.) India 415639 Department of Chemistry, Ratnagiri Sub-centre, University of Mumbai P-61 MIDC Mirjole Ratnagiri (M. S.) India 415639 Department of Chemistry, Ratnagiri Sub-centre, University of Mumbai P-61 MIDC Mirjole Ratnagiri (M. S.) India 415639 AUTHOR [1]. Mansoori G.A., Soelaiman T.A.F. Nanotechnology, 2005, 2:1 1 [2]. Rajput N. International Journal of Advances in Engineering & Technology, 2015, 7:1806 2 [3]. Kulkarni V.D., Kulkarni P.S. International Journal of Chemical Studies, 2013, 1:1 3 [4]. Tsai W.T., Yang J.M., Lai C.W., Cheng Y.H., Lin C.C., Yeh C.W. Bioresour Technol., 2006,97:488 4 [5]. Park H.J., Jeong S.W., Yang J.K., Kim B.G., Lee S.M. Journal of Environmental Sciences, 2007, 19:1436 5 [6]. Turxer-graff B.Y.R. J. Gen. Microbiol., 2019, 7:31 6
ORIGINAL_ARTICLE In vitro bio-synthesis of silver nanoparticles using flower extract of parasitic plant Cascuta reflexa and evaluation of its biological properties This paper deals with the rapid photosensitized biosynthesis of silver nanoparticles using aqueous extract of flowers of Cascuta reflexa. The reaction was carried out in ambient sunlight. The mixing of aqueous solution of silver nitrate and the flower extract shows color transitions from yellow to light brown and finally dark brown colour, indicating the formation of silver nanoparticles. As synthesized the nanoparticles were characterized by various techniques such as UV visible spectroscopy, XRD, FT-IR, TEM. The TEM analysis revealed that the particles were predominantly spherical and size ranging from 20 to 50 nm. The antioxidant properties were tested by FR AP assay method. The antibacterial properties of synthesized Nanoparticles were tested against pathogens such. P.aeruginosa, E.coli, B. subtilus and S.aureus. https://www.ajnanomat.com/article_102132_a7acbf3b2f2b19beadc6e573e41710ca.pdf 2020-04-01T11:23:20 2020-07-11T11:23:20 121 130 10.26655/AJNANOMAT.2020.2.4 Silver nanoparticles Photosensitized biosynthesis aqueous extract of flowers of Cascuta reflexa antimicrobial testing FRAP assay Nida S.Shaikh [email protected] true 1 Department of Chemistry, Govt.Vidarbha Institute of Science and Humanities, Amravati-444604, India Department of Chemistry, Govt.Vidarbha Institute of Science and Humanities, Amravati-444604, India Department of Chemistry, Govt.Vidarbha Institute of Science and Humanities, Amravati-444604, India LEAD_AUTHOR Rahimullah S.Shaikh true 2 Department of Chemistry, Govt.Vidarbha Institute of Science and Humanities, Amravati-444604, India Department of Chemistry, Govt.Vidarbha Institute of Science and Humanities, Amravati-444604, India Department of Chemistry, Govt.Vidarbha Institute of Science and Humanities, Amravati-444604, India AUTHOR Sahebrao Kashid [email protected] true 3 Department of Chemistry, Institute of Science, Homi Bhabha State University, Mumbai-400032, Mumbai Department of Chemistry, Institute of Science, Homi Bhabha State University, Mumbai-400032, Mumbai Department of Chemistry, Institute of Science, Homi Bhabha State University, Mumbai-400032, Mumbai AUTHOR [1]. Rautela A., Rani J., Debnath M. Journal of Analytical Science and Technology, 2019, 5:10 1 [2]. Ramteke C., Chakrabarti T., Sarangi B.K., Pandey R.A., Journal of Chemistry Materials Letters, 2013, 67:91 2 [3].Ahmed S., Ikram S. Open Access Journal, 2014, 6:1000309 3 [4]. Banasiuk R., Krychowiak M., Swigon D., Tomaszewicz W., Michalak A., Chylewska A., Ziabka M., Lapinsk M., Koscielsk B. Arabian Journal of Chem., 2017, 13:1415 4 [5]. Singh A., Jain D., Upadhyay M.K., Khandelwala N., Verma H. J. Nanomaterials and Biostructures, 2019, 5:483 5 [6]. Suwan T., Wanachantararak P., Khongkhunthian S. Drug Discoveries & Therapeutic., 2018,12:259 6 [7]. Ciesla L., Kowalska I., Oleszek W., Stochmal A. Phytochem Anal., 2013, 24:47 7 [8]. Kharissova O.V., Dias H.V., Kharisov B.I., Perez B.O. Trends Biotechnol., 2013, 31:240 8 [9]. Saini P., Mithal R., Menghanu E. International Journal of Scientific and Engineering Research, 2015, 6:25 9 [10]. Rai D.K., Sharma V., Pal K., Gupta R.K. International Journal., 2016, 3:428 10 [11]. Dubey M., Bhadauria S., Sharma V.K., Katoch V.M. International Journal of Green Nanotechnology., 2012, 4:174 11 [12]. Pathak R.S., Hendre A.S., Der Pharmacia letter., 2015, 7:313 12 [13]. Lakshmanan G., Sathiyaselan A., Kalaichelvan P.T., Murugesank., Karbal International Journal of Modern Science., 2018, 4:61 13 [14]. Kothekar D. International Journal of Pharma and Bioscieces, 2017, 8:202 14 [15]. Saxena A., Tripathi R.M., Zafar F., Singh P. Materials Letters, 2012, 67:91 15 [16]. Shaikh R., Syed I. Asian Journal of Green Chemistry, 2019, 3:17 16 [17]. Pavani K.V., Gayathramma K., Banerjee A., Shah S. American J. of Nanomaterials, 2013, 1:5 17 [18]. Pagadala S.R., Redappa M., Harini S.S., Tenkayala S.R., Gangadhara R. Journal of Drug Delivery and Therapeutics, 2018, 8:301 18 [19]. Duraisamy K., Jung H.H.,Whoa S.P., Seok M.L., Wahab R., Arabian Journal of Chemistry., 2014, 12:1722 19 [20]. Arun S., Saraswathi U., Singaravelu. International J. of Pharmaceutical Science, 2014, 3:54 20 [21]. Lin P.C., Lin S., Wang, P.C. Biotechnol. Adv., 2016, 32:711 21 [22]. Raut R.W., Kolekar N.S., Lakkakula J.R., Mendhulkar V.D., Sahebrao B.K. Nano Lett., 2010, 2:106 22 [23]. Solomani R., Montemor A.F., Rinaldi B.G., Nanotechnology Sci. And Applications., 2017, 10:115 23 [24]. Kim S.H., Lee S.H., Ryu D.S., Choi S.J., Lee D.S. Korean J. of Microbial and Biotechnology, 2011, 39:77 24 [25]. Patil S., Sivaraj R., Venckatesh R., Vanathi P., Rajiv P. International Journal of Current Research., 2015,7:21539 25 [26]. Ponaruselvam S., Paneerselvam C., Murugan K., Aarthi N., Kalimuthu K., and Thangamani S. Don Asian Pacific Journal of Tropical Biomedicine, 2012, 2:574 26 [27]. Selvi K.V., SivaKumar T. International Journal of Current Research in Chemistry and Pharmaceutical Sciences, 2014, 1:105 27
ORIGINAL_ARTICLE Efficient production of 2-amino-4H-chromenes and 14-aryl-14H-dibenzo[a, j]xanthenes catalyzed by N, N-diethyl-N-sulfoethanaminium hydrogen sulfate In this study, acidic ionic liquid N, N-diethyl-N-sulfoethanaminium hydrogen sulfate {[Et3N-SO3H]HSO4} was utilized to promote two classes of useful organic transformations under solvent-free conditions including, i) the condensation of arylaldehydes with malononitrile and 1-naphthol, leading to 2-amino-4H-chromenes, and ii) the condensation reaction of arylaldehydes with 2-naphthol to give 14-aryl-14H-dibenzo[a, j]xanthenes. The ionic liquid efficiently catalyzed the reactions, and the products were obtained in excellent yields (94-98%) within short reaction times (8-30 min). https://www.ajnanomat.com/article_102406_dbac66aee2c7bf493e78f6296f449441.pdf 2020-04-01T11:23:20 2020-07-11T11:23:20 131 137 10.26655/AJNANOMAT.2020.2.5 Acidic ionic liquid N N-Diethyl-N-sulfoethanaminium hydrogen sulfate {[Et3N-SO3H]HSO4} 2-Amino-4H-chromene 14-Aryl-14H-dibenzo[a j]xanthene Solvent-free Arezoo Pourkazemi [email protected] true 1 Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran AUTHOR Zahra Nasouri [email protected] true 2 Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran AUTHOR Fatemeh Fakhraie [email protected] true 3 Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran AUTHOR Alemeh Razzaghi [email protected] true 4 Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran AUTHOR Abolfath Parhami [email protected] true 5 Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran AUTHOR Abdolkarim Zare [email protected] true 6 Department of Chemistry, Payame Noor University, PO Box 19395‐3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO Box 19395‐3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO Box 19395‐3697 Tehran, Iran LEAD_AUTHOR [1]. Hasaninejad A., Zare A., Shekouhy M., Ameri Rad J.J. Comb. Chem., 2010, 12:844 1 [2]. Zolfigol M.A., Khazaei A., Moosavi-Zare A.R., Zare A., Kruger H.G., Asgari Z., Khakyzadeh V., Kazem-Rostami M. J. Org. Chem., 2012, 77:3640 2 [3]. Hajipour A.R., Rafiee F. Org Prep Proced Int., 2015, 47:249 3 [4]. Ghaffari Khaligh N., Mihankhah T., Johan M.R. J Mol Liq., 2019, 277:794 4 [5]. Han X-X., Du H., Hung C-T., Liu L-L., Wu P-H., Ren D-H., Huang S-J., Liu S-B. Green Chem., 2015, 17:499 5 [6]. Al Otaibi A., Deane F.M., Russell C.C., Hizartzidis L., McCluskey S.N., Sakoff J.A., McCluskey A. RSC Adv., 2019, 9:7652 6 [7]. Karami M., Maghsoudi M., Merajoddin M., Zare A. Asian J Nanosci Mater, 2019, 2:413 7 [8]. Rezayati S., Hajinasiri R., Hossaini Z., Abbaspour S. Asian J Green Chem., 2018, 2:268 8 [9]. Zare A., Nasouri Z. J Mol Liq., 2016, 216:364 9 [10]. Sajjadifar S., Mohammadi-Aghdam S. Asian J Green Chem., 2017, 1:1 10 [11]. Karami M., Gholami B., Hekmat Zadeh T., Zare A. Chem Methodol., 2019, 3:509 11 [12]. Irannejad-Gheshlaghchaei N., Zare A., Sajadikhah S.S., Banaei A. Res Chem Intermed., 2018, 44:6253 12 [13]. Patel A.S., Tala S.D., Nariya P.B., Ladva K.D., Kapuriya N.P. J Chin Chem Soc., 2019, 66:247 13 [14]. Kumar D., Reddy V.B., Mishra B.G., Rana R.K., Nadagouda M.N., Varma R.S. Tetrahedron., 2007, 63:3093 14 [15]. Rostami A., Atashkar B., Gholami H. Catal Commun., 2013, 37:69 15 [16]. Dekamin M.G., Eslami M., Maleki A. Tetrahedron., 2013, 69:1074 16 [17]. Baghernejad B., Heravi M.M., Oskooie H.A. J Korean Chem Soc., 2009, 53:631 17 [18]. Pourhasan B., Mohammadi‐Nejad A. J Chin Chem Soc., 2019, 66:1356 18 [19]. Safari J., Javadian L. Ultrason Sonochem., 2015, 22:341 19 [20]. Jin T-S., Xiao J-C., Wang S-J., Li T-S. Ultrason Sonochem., 2004, 11:393 20 [21]. Khafagy M.M., El-Wahas A.H.F.A., Eid F.A., El-Agrody A.M. Il Farmaco., 2002, 57:715 21 [22]. Mohr S.J., Chirigos M.A., Fuhrman F.S., Pryor J.W. Cancer Res., 1975, 35:3750 22 [23]. Martinez A.G., Marco L.J. Bioorg Med Chem Lett., 1997, 7:3165 23 [24]. Bianchi G., Tava A. Agric Biol Chem., 1987, 51:2001 24 [25]. Hafez E.A., Elnagdi M.H., Elagamey A.A., El-Taweel F.A.M. Heterocycles., 1987, 26:903 25 [26]. Ellis G.P. The Chemistry of Heterocyclic Compounds. Chromenes, Harmones, and Chromones. Weissberger A, Taylor EC (Eds.); John: New York, NY; Chapter II., 1977, pp 11 26 [27]. Naeimi H., Nazifi Z.S. Appl Catal A: Gen., 2014, 477:132 27 [28]. Harichandran G., Amalraj S.D., Shanmugam P. J Mol Catal A: Chem., 2014, 392:31 28 [29]. Mouradzadegun A., Mostafavi M.A., Ganjali M.R. J Incl Phenom Macrocycl Chem., 2018, 91:25 29 [30]. Mirjalili B.F., Bamoniri A., Akbari A., Taghavinia N. J Iran Chem Soc., 2011, 8:S129 30 [31]. Shirini F., Abedini M., Pourhasan R. Dyes Pigm., 2013, 99:250 31 [32]. Dashtizadeh M., Khalili M., Reghbat F., Abdi E., Bahadori Z., Sadripour Z., Zare A., Didehban K., Sajadikhah S.S. Iran Chem Commun., 2019, 7:257 32 [33]. Zare A., Merajoddin M., Abi F., Moosavi-Zare A.R., Mokhlesi M., Zolfigol M.A., Asgari Z., Khakyzadeh V., Hasaninejad A., Khalafi-Nezhad A., Parhami A. J Chin Chem Soc., 2012, 59:860 33 [34]. Ghaffari Khaligh N., Shirini F. Ultrason Sonochem., 2015, 22:397 34 [35]. Zolfigol M.A., Moosavi-Zare A.R., Arghavani-Hadi P., Zare A., Khakyzadeh V., Darvishi G. RSC Adv., 2012, 2:3618 35 [36]. Qiao Y.F., Okazaki T., Ando T., Mizoue K., Kondo K., Eguchi T., Kakinuma K. J Antibiot., 1998, 51:282 36 [37]. Song Y.B., Yang Y.H., You J., Liu B., Wu L.J., Hou Y.L., Wang W.J., Zhu J.X. Chem Pharm Bull., 2013, 61:167 37 [38]. Poupelin J.P., Ruf G.S., Blanpin O.F., Narcisse G., Ernouf G.U., Lacroix R. Eur J Med Chem., 1978, 13:67 38 [39]. Knight C.G., Stephens T. Biochem J., 1989, 258:683 39 [40]. De S., Das S., Girigoswami A. Spectrochim Acta A: Mol Biomol Spectr., 2005, 61:1821 40
ORIGINAL_ARTICLE Enantiopure asymmetrically functionalized lambda-shape nanoscaffolds: optically active ethano-bridged hybrid Tröger base analogs Hybridization, functionalization, and enantioseparation of ethano-bridged Tröger base analogs have been performed. X-ray crystallographic analysis, chiral HPLC and CD spectroscopy have assigned the absolute configuration of the obtained ethano-bridged Tröger base analogs, confirming their optical purity. These optically active building blocks are readily modifiable and owing to their versatility they offer unique benefits for the growing community of molecular machinists. https://www.ajnanomat.com/article_102820_ba28be315070bc0a2e1d52c2db91edbb.pdf 2020-04-01T11:23:20 2020-07-11T11:23:20 138 147 10.26655/AJNANOMAT.2020.2.6 Tröger base Enantioseparation Nitrogen stereocenter Chiral discriminator Masoud Kazem-Rostami [email protected] true 1 Faculty of Science and Engineering, Macquarie University, North Ryde, NSW 2109, Australia Faculty of Science and Engineering, Macquarie University, North Ryde, NSW 2109, Australia Faculty of Science and Engineering, Macquarie University, North Ryde, NSW 2109, Australia LEAD_AUTHOR [1]. Stoddart J.F. Angew. Chem. Int. Ed., 2017, 56:11094 1 [2]. Sluysmans D., Stoddart J.F. Proc. Natl. Acad. Sci. U.S.A., 2018, 115:9359 2 [3]. Kazem-Rostami M., Akhmedov N.G., Faramarzi S. J. Mol. Struct., 2019, 1178:538 3 [4]. Dolenský B., Elguero J., Král V., Pardo C., Valík M., Current Tröger's Base Chemistry. In Adv. Heterocycl. Chem.; Academic Press: United States, 2007; p 56 4 [5]. Bandara H.M.D., Burdette S.C. Chem. Soc. Rev., 2012, 41:1809 5 [6]. Kazem-Rostami M. Synthesis, 2017, 49:1214 6 [7]. Cowart M.D., Sucholeiki I., Bukownik R.R., Wilcox C.S. J. Am. Chem. Soc., 1988, 110:6204 7 [8]. Cai K., Lipke M.C., Liu Z., Nelson J., Cheng T., Shi Y., Cheng C., Shen D., Han J.-M., Vemuri S., Feng Y., Stern C.L., Goddard W.A., Wasielewski M.R., Stoddart J.F. Nat. Commun., 2018, 9:5275 8 [9]. Kiehne U., Weilandt T., Lützen A. Eur. J. Org. Chem., 2008, 2008:2056 9 [10]. Kiehne U., Weilandt T., Lützen A. Org. Lett., 2007, 9:1283 10 [11]. Bhaskar Reddy M., Shailaja M., Manjula A., Premkumar J.R., Sastry G.N., Sirisha K., Sarma A.V.S. Org. Biomol. Chem., 2015, 13:1141 11 [12]. Boyle E.M., Comby S., Molloy J.K., Gunnlaugsson T. J. Org. Chem., 2013, 78:8312 12 [13]. Kazem-Rostami M. Synlett, 2017, 28:1641 13 [14]. Kazem-Rostami M., Moghanian A. Org. Chem. Front., 2017, 4:224 14 [15]. Kazem-Rostami M. New J. Chem., 2019, 43:7751 15 [16]. Hamada Y., Mukai S. Tetrahedron Asymmetry, 1996, 7:2671 16 [17]. Michon C., Sharma A., Bernardinelli G., Francotte E. Lacour J. Chem. Commun., 2010, 46:2206 17 [18]. Kamiyama T., Sigrist L.,Cvengroš J. Synthesis, 2016, 48:3957 18 [19]. Sharma A., Besnard C., Guenee L. Lacour J. Org. Biomol. Chem., 2012, 10:966 19 [20]. Sharma A., Guenee L., Naubron J.-V. Lacour J. Angew. Chem., Int. Ed., 2011, 50:3677 20 [21]. Bosmani A., Guarnieri-Ibáñez A. Lacour J. Helv. Chim. Acta, 2019, 102:1900021 21 [22]. Alessandro B., Alejandro G.I., Sébastien G., Céline B. Jérôme L. Angew. Chem. Int. Ed., 2018, 57:7151 22 [23]. Michon C., Gonçalves-Farbos M.-H. Lacour J. Chirality, 2009, 21:809 23 [24]. Weatherly C.A., Na Y.-C., Nanayakkara Y.S., Woods R.M., Sharma A., Lacour J., Armstrong D.W. J. Chromatogr. B, 2014, 955:72 24 [25]. Satishkumar S., Periasamy M. Tetrahedron Asymmetry, 2006, 17:1116 25 [26]. Didier D., Tylleman B., Lambert N., Vande Velde C.M.L., Blockhuys F., Collas A., Sergeyev S. Tetrahedron, 2008, 64:6252 26 [27]. Jameson D.L., Field T., Schmidt M.R., DeStefano A.K., Stiteler C.J., Venditto V.J., Krovic B., Hoffman C.M., Ondisco M.T., Belowich M.E. J. Org. Chem., 2013, 78:11590 27 [28]. Didier D., Sergeyev S. Eur. J. Org. Chem., 2007, 2007:3905 28 [29]. Jensen J., Tejler J., Wärnmark K. J. Org. Chem., 2002, 67:6008 29 [30]. Jarzebski A., Bannwarth C., Tenten C., Benkhaeuser C., Schnakenburg G., Grimme S. Lützen A. Synthesis, 2015, 47:3118 30 [31]. Bishop R.R. J. Appl. Chem., 1956, 6:256 31 [32]. Kiehne U., Lützen A. Synthesis, 2004, 2004:1687 32 [33]. Tatar A., Valík M., Novotná J., Havlík M., Dolenský B., Král V., Urbanová M. Chirality, 2014, 26:361 33 [34]. Malik Q.M., Ijaz S., Craig D.C., Try A.C. Tetrahedron, 2011, 67:5798 34 [35]. Artacho J., Wärnmark K. Synthesis, 2009, 2009:3120 35 [36]. Dusso D., Ramirez C., Parise A., Lanza P., Vera D.M., Chesta C., Moyano E.L., Akhmedov N.G. Magn. Reson. Chem., 2019, 57:423 36 [37]. Didier D., Sergeyev S. Tetrahedron, 2007, 63:3864 37 [38]. Benkhäuser-Schunk C., Wezisla B., Urbahn K., Kiehne U., Daniels J., Schnakenburg G., Neese F., Lützen A. ChemPlusChem, 2012, 77:396 38 [39]. Weilandt T., Kiehne U., Bunzen J., Schnakenburg G., Lützen A. Chem. Eur. J., 2010, 16:2418 39 [40]. Kiehne U., Bruhn T., Schnakenburg G., Fröhlich R., Bringmann G., Lützen A. Chem. Eur. J., 2008, 14:4246 40 [41]. Ishida Y., Ito H., Mori D., Saigo K. Tetrahedron Lett., 2005, 46:109 41 [42]. Faroughi M., Zhu K.-X., Jensen P., Craig D.C., Try A.C. Eur. J. Org. Chem., 2009, 2009:4266 42 [43]. Pereira R., Pfeifer L., Fournier J., Gouverneur V., Cvengroš J. Org. Biomol. Chem., 2017, 15:628 43 [44]. Sergeyev S., Didier D., Boitsov V., Teshome A., Asselberghs I., Clays K., Vande Velde C.M.L., Plaquet A., Champagne B. Chem. Eur. J., 2010, 16:8181 44 [45]. Kazem-Rostami M. J. Therm. Anal. Calorim., 2019, 45 [46]. Maugeri L., Lébl T., Cordes D.B., Slawin A.M.Z., Philp D. J. Org. Chem., 2017, 82:1986 46 [47]. Maugeri L., Jamieson E.M.G., Cordes D.B., Slawin A.M.Z., Philp D. Chem. Sci., 2017, 8:938 47 [48]. Maugeri L., Asencio-Hernández J., Lébl T., Cordes D.B., Slawin A.M.Z., Delsuc M.-A., Philp D. Chem. Sci., 2016, 7:6422 48 [49]. Banerjee S., Bright S.A., Smith J.A., Burgeat J., Martinez-Calvo M., Williams D.C., Kelly J.M., Gunnlaugsson T. J. Org. Chem., 2014, 79:9272 49
ORIGINAL_ARTICLE Activated carbon sulfonic acid (AC-SO3H) as a green acidic catalyst for solvent-free synthesis of benzimidazole derivatives In this work, activated carbon sulfonic acid was prepared from the reaction of activated carbon and chlorosulfonic acid in chloroform at reflux conditions and characterized using X-ray powder diffraction (XRD) spectrum, infra-red (IR) spectrum, field emission scanning electron microscopy (FE-SEM) images and energy dispersive X-ray spectroscopy (EDS). Benzimidazole was prepared in excellent yields through the multicomponent condensation reaction of 1,2-phenylenediamine with aryl aldehydes in the presence of sulfonic acid-functionalized activated carbon (AC-SO3H), as an active catalyst, under solvent-free conditions. According to the optimized variables, the best reaction conditions for preparing benzimidazole were found to be: 0.02 gram of catalyst in solvent-free condition at 30 Min. and at 75 °C. To demonstrate the stability and durability of the catalyst, the yields of five successive runs with recovered catalyst were reported, showing no significant change in the obtained yields. Ultimately, the synthesis of benzimidazoles was achieved using an efficient, simple, environmentally benign, inexpensive and economic approach in the presence of AC-SO3H catalyst. https://www.ajnanomat.com/article_103975_97fb64267e805d59e58dc2a00c27e8ca.pdf 2020-04-01T11:23:20 2020-07-11T11:23:20 148 156 10.26655/AJNANOMAT.2020.2.7 Activated carbon sulfonic acid catalyst Benzimidazole Solvent-free Green synthesis Roya Afsharpour [email protected] true 1 Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran AUTHOR Sahar Zanganeh [email protected] true 2 Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran AUTHOR Sohaila Kamantorki [email protected] true 3 Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran AUTHOR Fatemeh Fakhraei [email protected] true 4 Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran AUTHOR Esmael Rostami [email protected] true 5 Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, Iran LEAD_AUTHOR [1]. Debus H. Annal Chem Pharm., 1858, 107:199 1 [2]. Radziszewski B. Ber Deut Chem Ges., 1882, 15:1493 2 [3]. Pellei M., Gandin V., Marzano C., Marinelli M., Del Bello F. and Santini C. Appl. Organomet. Chem., 2018, 32:e4185 3 [4]. Naeimi H., Alishahi N. J Exp Nanosci., 2015, 10:222 4 [5]. Naeimi H., Alishahi N. J Ind Eng Chem., 2014, 20:2543 5 [6]. Sharma G.V.M., Jyothi Y. and Lakshmi P.S. Synth Commun., 2006, 36:2991 6 [7]. Mirjalili B.F., Bamoniri A., Mirhoseini M.A. Sci Iran., 2013, 20:587 7 [8]. Safari J., Khalili S.D., Banitaba S.H. Synth Commun., 2011, 41:2359 8 [9]. Sangshetti J.N., Kokare N.D., Kotharkar S.A., Shinde D.B. Chin Chem Lett., 2008, 19:762 9 [10]. Kanazawa C., Kamijo S., Yamamoto Y. J Am Chem Soc., 2006, 128:10662 10 [11]. a) Wang L., Sheng J., Tian H., Qian C. Synth Commun., 2004, 34:4265; b) Wang F., Tran-Dubé M., Scales S., Johnson S., McAlpine I., Ninkovic S. Tetrahedron Lett. 2013, 54:4054 11 [12]. Oda S., Shimizu H., Aoyama Y., Ueki T., Shimizu S., Osato H., Takeuchi Y. Org Process Res Dev., 2011, 16:96 12 [13]. Rezayati S., Mehmannavaz M., Salehi E., Haghi S., Hajinasiri R., Afshari Sharif Abad S. J Sci I R Iran, 2016, 27:51 13 [14]. Rezayati S., Abbasi Z., Rezaee Nezhad E., Hajinasiri R., Soleymani Chalanchi S. Org Chem Res., 2016, 2:162 14 [15]. Duan L.P., Li Q., Wu N.B., Xu D.F., Zhang H.B., Chin Chem Lett., 2014, 25:155 15 [16]. Shingalapur R.V., Hosamani K.M., Keri R.S. Eur J Med Chem., 2009, 44:4244 16 [17]. Mukherjee A., Kumar S., Seth M., Bhaduri A. P. Ind J Chem., 1989, 28:391 17 [18]. Bhandari K., Srinivas N., Marrapu, V.K. Bioorg Med Chem Lett., 2010, 20:291 18 [19]. Zang H., Su Q., Mo Y., Cheng B. W., Jun S. Ultrason Sonochem., 2010, 17:749 19 [20]. Tonelli M., Simone M., Tasso B., Novelli F., Biodo V. Bioorg Med Chem., 2010, 18:2937 20 [21]. Nasr-Esfahani M., Montazerozohori M., Abdizadeh T. Chem Pap., 2015, 69:1491 21 [22]. Ozkay Y., Iskar I., Incesu Z., Alkalin G. E. Eur J Med Chem., 2010, 45:3320 22 [23]. Hadizadeh F.H., Hosseinzadeh V., Shariaty M., Kazemi S. J Pharm Res., 2008, 7:29 23 [24]. Wan Y., Liu G., Zhao L., Wang H., Hung S., Chen L., Wu H. J Heterocycl Chem., 2014, 51:713 24 [25]. Bhragual D.D., Kumar N., Drabu S., J Chem Pharm Res. 2010, 2:345 25 [26]. Chawla A., Sharma A., Sharma A. K. Pharma Chem. 2012, 4:116 26