ORIGINAL_ARTICLEPhotocatalytic degradation of malachite green dye under UV light irradiation using calcium-doped ceria nanoparticlesIn this study, photocatalytic activity of Ca-doped ceria (CDC) for malachite green (MG) degradation was investigated. CDC was successfully synthesized via co-precipitation method using ammonium oxalate as a precipitating agent. CDC was characterized using Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), UV-Vis spectroscopy, and scanning electron microscopy (SEM). The band gap energy (Eg) of CDC was found to be 3.96 eV. In addition, the factors affecting the photodegradation of MG including; irradiation time, photocatalyst dosage, initial dye concentration, and solution temperature were studied. The results revealed that CDC could degrade approximately 93% of MG dye at the concentration of 6 mg/L, irradiation time of 90 min, photocatalyst dosage of 0.1 g, and solution temperature of 35 °C. The obtained results indicate that CDC is a promising material for the photocatalytic applications and can be used to eliminate very toxic dyes such as MG.https://www.ajnanomat.com/article_92856_7418c11b95a9cf12a1349f7c69c4acc9.pdf2020-01-01T11:23:202020-07-11T11:23:2011410.26655/AJNANOMAT.2020.1.1dye photodegradationNanostructured materialsdoped ceria catalystSemiconductorOptical propertiesIbrahim A.Amar[email protected]true1Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya |Central Laboratory at Sebha University, Sebha, LibyaDepartment of Chemistry, Faculty of Science, Sebha University, Sebha, Libya |Central Laboratory at Sebha University, Sebha, LibyaDepartment of Chemistry, Faculty of Science, Sebha University, Sebha, Libya |Central Laboratory at Sebha University, Sebha, LibyaLEAD_AUTHORHebatallah M.Harara[email protected]true2Department of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaDepartment of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaDepartment of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaAUTHORQamrah A.Baqul[email protected]true3Department of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaDepartment of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaDepartment of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaAUTHORMabroukah A.Abdul Qadir[email protected]true4Department of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaDepartment of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaDepartment of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaAUTHORFatima A.Altohami[email protected]true5Department of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaDepartment of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaDepartment of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaAUTHORMohammed M.Ahwidi[email protected]true6Department of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaDepartment of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaDepartment of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaAUTHORIhssin A.Abdalsamed[email protected]true7Department of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaDepartment of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaDepartment of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaAUTHORFatema A.Saleh[email protected]true8Department of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaDepartment of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaDepartment of Chemistry, Faculty of Science, Sebha University, Sebha, LibyaAUTHOR[1]. Mousavi M., Habibi-Yangjeh A., Pouran S. R. J. Mater. Sci. Mater. Electron.,2018, 29:17191[2]. Chen Y., Zhang Y., Liu C., Lu A., Zhang W. Int. J. Photoenergy., 2012, 2012:12[3]. Mohamed A., Ghobara M. M., Abdelmaksoud M. K., Mohamed G.G. Sep. Purif. Technol., 2019, 210:9353[4]. Gallego-Urrea J.A., Hammes J., Cornelis G., Hassellöv M. NanoImpact., 2016, 3-4:674[5]. Dickhout J.M., Moreno J., Biesheuvel P.M., Boels L., Vos W.M.d., Lammertink R.G.H. J. Colloid Interface Sci., 2017, 487:5235[6]. Gnanam S., Rajendran V. J. Alloys Compd., 2018, 735:18546[7]. Murugana R., Kashinath L., Subash R., Sakthivel P., Byrappa K., Rajendran S., Ravi G. Mater. Res. Bull., 2018, 97:3197[8]. Al-Anber Z.A., Al-Anber M.A., Matouq M., Al-Ayed O.O., Omari N.M.N.M. Desalination., 2011, 276:1698[9]. Amar I. A., Sharif A., Alkhayali M., Jabji M., Altohami F., AbdulQadir M., Ahwidi M.M. IJEE., 2018, 9:2479[10]. Awin L.A., El-Rais M.A., Etorki A.M., Mohamed N.A., Erhab H.M. Mater. Focus., 2018, 7:110[11]. Feizpoor S., Habibi-Yangjeh A. , Yubuta K., Vadivelc S. Mater. Chem. Phys., 2019, 224:1011[12]. Markovic D., Milovanovic S., Radoicic M., Radovanovic Z., Zizovic I., Saponjic Z., Radetic M. J. Serb. Chem. Soc., 2018, 83:137912[13]. Adepu A.k., Katta V., Venkatathri N. New. J. Chem., 2017, 41:249813[14]. Pirhashemi M., Habibi-Yangjeh A., Pouran S.R. J. Ind. Eng Chem., 2018, 62:114[15]. Ayodhya D., Veerabhadram G. Mater. Today. Energy., 2018, 9:83 15[16]. Van Dao D., Nguyen T.T.D., Majhi S.M., Adilbish G., Lee H.J., Yu Y.T., Lee I.H. Mater. Chem. Phys., 2019, 231:116[17]. Elahi B., Mirzaee M., Darroudi M., Oskuee R.K., Sadri K., Amiri M.S. Ceram. Int., 2019, 45:479017[18]. Chandar N.K., Jayavel R. Physica E., 2014, 58:4818[19]. Channei D., Inceesungvorn B., Wetchakun N., Ukritnukun S., Nattestad A., Chen J., Phanichphant S. Sci. Rep., 2014, 4:575719[20]. Goubin F., Rocquefelte X., Whangbo M.H., Montardi Y., Brec R., Jobic S. Chem. Mater., 2004, 16:66220[21]. Yu J.G., Yang B.C., Shin J.W., Lee S., Oh S., Choi J.H., Jeong J., Noh W., An J. Ceram. Int., 2019, 45:381121[22]. Amar I.A., Petit C.T. G., Zhang L., Lan R., Skabara P.J., Tao S.W. Solid. State. Ionics., 2011, 201:9422[23]. Amar I.A., Petit C.T.G., Mann G., Lan R., Skabara P.J., Tao S. Int. J. Hydrogen Energy., 2014, 39:432223[24]. Li H., Wang G., Zhang F., Cai Y., Wang Y., Djerdj I. RSC. Adv., 2012, 2:1241324[25]. Li R., Yabe S., Yamashita M., Momose S., Yoshida S., Yin S., Sato T. Solid. State. Ionics., 2002, 151:23525[26]. Truffault L., Ta M.T., Devers T., Konstantinov K., Harel V., Simmonard C., Andreazza C., Nevirkovets I.P., Pineau A., Veron O., Blondeau J.P. Mater. Res. Bull., 2010, 45:52726[27]. Slostowski C., Marre S., Bassata J.M., Aymonier C. J. Supercrit. Fluids., 2013, 84:89 [28]. Yue L., Zhang X.M. J. Alloys Compd., 2009, 475:70227[29]. Maria Magdalane C., Kaviyarasu K., Judith Vijaya J., Jayakumar C., Maaza M., Jeyaraj B. J. Photochem. Photobiol., B., 2017, 169:11028[30]. Banerjee S., Devi P.S., Topwal D., Mandal S., Menon K. Adv. Funct. Mater., 2007, 17:284729[31]. Ma Y., Wang X., Khalifa H.A., Zhu B., Muhammed M. Int. J. Hydrogen Energy., 2012, 37:1940130[32]. Soleimani F., Salehi M., Gholizadeh A. Ceram. Int., 2018, 45:9826.31[33]. Fu Y.P., Chen S.H., Huang J.J. Int. J. Hydrogen Energy., 2010, 35:74532[34]. Matmin J., Jalani M.A., Osman H., Omar Q., Ab’lah N., Elong K., Kasim M.F. Nanomaterials., 2019, 9:26433[35]. He H.Y., Lu J. Sep. Purif. Technol., 2017, 172:37434[36]. Mandal R.K., Purkayastha M.D., Majumder T.P. Optik. 2019, 180:17435[37]. Athawale A.A., Bapat M.S., Desai P.A. J. Alloys Compd., 2009, 484:21136[38]. Prabaharan D.M.D.M., Sadaiyandi K., Mahendran M., Sagadevan S. Mat. Res., 2016, 19:47837[39]. Nezamzadeh-Ejhieh A., Shams-Ghahfarokhi Z. J. Chem., 2013, 2013:1138[40]. Saleh R., Djaja N.F. Superlattices Microstruct., 2014, 74:21739[41]. Sanna V., Pala N., Alzari V., Nuvoli D., Carcelli M. Mater. Lett.,2016, 162:25740[42]. Raja V.R., Karthika A., Kirubahar S.L., Suganthi A., Rajarajan M. Solid. State. Ionics., 2019, 332:5541[43]. Josephine G.A.S., Ramachandran S., Sivasamy A. J. Saudi Chem Soc., 2015, 19:54942[44]. Zhang C., Hen H., Wang N., Chen H., Kong D. Ceram. Int., 2013, 39:3685-343[45]. Chen C.C., Lu C.S., Chung Y.C., Jan J.L. J. Hazard. Mater., 2007, 141:52044[46]. Saikia L., Bhuyan D., Saikia M., Malakar B., Dutta D.K., Sengupt P. Appl. Catal. A-Gen., 2015, 490:4245ORIGINAL_ARTICLEAntifungal activity of biosynthesized CuO nanoparticles using leaves extract of Moringa oleifera and their structural characterizationsCopper oxide nanoparticles (CuONPs) were synthesized using Moringa oleifera leaf extract via a simple green chemistry approach. The prepared CuONPs were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), UV-visible diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. The CuONPs showed antifungal activity against Candida albicans, Aspergillus niger, Aspergillus clavatus, Trichophyton mentographytes, and Epidermophyton floccosum. The results revealed the successful synthesis of CuONPs by simple green chemistry approach may provide a useful tool in the field of nanotechnology.https://www.ajnanomat.com/article_93007_2918144b12b5987ac1a0c2ec9e6eb53d.pdf2020-01-01T11:23:202020-07-11T11:23:20152310.26655/AJNANOMAT.2020.1.2NanotechnologyCuO NPsAntifungal activityMoringa oleiferaPhotoluminescenceKhanderaoPagar[email protected]true1Department of Chemistry, KKHA Arts, SMGL Commerce and SPHJ Science College, Chandwad, Savitribai Phule Pune University, Maharashtra 423 101, IndiaDepartment of Chemistry, KKHA Arts, SMGL Commerce and SPHJ Science College, Chandwad, Savitribai Phule Pune University, Maharashtra 423 101, IndiaDepartment of Chemistry, KKHA Arts, SMGL Commerce and SPHJ Science College, Chandwad, Savitribai Phule Pune University, Maharashtra 423 101, IndiaAUTHORSureshGhotekar[email protected]true2Department of Chemistry, Sanjivani Arts, Commerce and Science College, Kopargaon 423 603, Savitribai Phule Pune University, Maharashtra, IndiaDepartment of Chemistry, Sanjivani Arts, Commerce and Science College, Kopargaon 423 603, Savitribai Phule Pune University, Maharashtra, IndiaDepartment of Chemistry, Sanjivani Arts, Commerce and Science College, Kopargaon 423 603, Savitribai Phule Pune University, Maharashtra, IndiaLEAD_AUTHORTruptiPagar[email protected]true3Department of Chemistry, G.M.D Arts, B.W Commerce and Science College, Sinnar, 422 103, Savitribai Phule Pune University, Maharashtra, IndiaDepartment of Chemistry, G.M.D Arts, B.W Commerce and Science College, Sinnar, 422 103, Savitribai Phule Pune University, Maharashtra, IndiaDepartment of Chemistry, G.M.D Arts, B.W Commerce and Science College, Sinnar, 422 103, Savitribai Phule Pune University, Maharashtra, IndiaAUTHORAmolNikam[email protected]true4Department of Chemistry, GMV Science College, Tala 402 111, University of Mumbai, Maharashtra, IndiaDepartment of Chemistry, GMV Science College, Tala 402 111, University of Mumbai, Maharashtra, IndiaDepartment of Chemistry, GMV Science College, Tala 402 111, University of Mumbai, Maharashtra, IndiaAUTHORShreyasPansambal[email protected]true5Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, IndiaDepartment of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, IndiaDepartment of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, IndiaAUTHORRajeshwariOza[email protected]true6Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, IndiaDepartment of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, IndiaDepartment of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, IndiaAUTHORDnyaneshwarSanap[email protected]true7Department of Chemistry, Arts, Commerce and Science College, Dindori 422 202, Savitribai Phule Pune University, Maharashtra, IndiaDepartment of Chemistry, Arts, Commerce and Science College, Dindori 422 202, Savitribai Phule Pune University, Maharashtra, IndiaDepartment of Chemistry, Arts, Commerce and Science College, Dindori 422 202, Savitribai Phule Pune University, Maharashtra, IndiaAUTHORHarshalDabhane[email protected]true8Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, IndiaDepartment of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, IndiaDepartment of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, IndiaAUTHOR[1]. Gawande M.B., Goswami A., Felpin F.X., Asefa T., Huang X., Silva R., Zou X., Zboril R., Varma R.S. Chemical reviews, 2016, 116:37221[2]. Ghosh Chaudhuri R., Paria S. Chemical reviews, 2011, 112:23732[3]. Daniel M.C., Astruc D. Chemical reviews, 2004, 104:2933[4]. Ghotekar S. Asian J. Green Chem., 2019, 3:1874[5]. Ahmed S., Ahmad M., Swami B.L., Ikram S. Journal of Advanced Research, 2016, 7:175[6]. Frewer L.J., Gupta N., George S., Fischer A.R.H., Giles E.L., Coles D. Trends in Food Science & Technology, 2014, 40:2116[7]. Kamble D.R., Bangale S.V., Ghotekar S.K., Bamane S.R. J Nanostruct., 2018, 8:1447[8]. Syedmoradi L., Daneshpour M., Alvandipour M., Gomez F.A., Hajghassem H., Omidfar K. Biosensors and Bioelectronics, 2017, 87:3738[9]. Ghotekar S., Pansambal S., Pagar K., Pardeshi O., Oza R. Nanochem. Res., 2018, 3:1899[10]. Savale A., Ghotekar S., Pansambal S., Pardeshi O. J. Bacteriol. Mycol. Open Access, 2017, 5:0014810[11]. Ghotekar S., Savale A., Pansambal S. J. Water Environ. Nanotechnol., 2018, 3:9511[12]. Ghotekar S.K., Vaidya P.S., Pande S.N., Pawar S.P. Int. J. Multidis. Res and Deve., 2015, 2:41912[13]. Ghotekar S.K., Pande S.N., Pansambal S.S., Sanap D.S., Mahale K.M., Sonawane B. World Journal of Pharmacy and Pharmaceutical Sciences, 2015, 4:130413[14]. Bangale S., Ghotekar S. Int. J. Nano Dimens., 2019, 10:21714[15]. Soleiman-Beigi M., Arzehgar Z. Synlett, 2018, 29:98615[16]. Sajjadifar S., Arzehgar Z., Khoshpoori S. J. Inorg. Organomet. Polym. Mater., 2018, 28:83716[17]. Arzehgar Z., Sajjadifar S., Arandiyan H. Asian J. Green Chem., 2019, 3:4317[18]. Soleiman-Beigi M., Arzehgar Z. J. Sulfur Chem., 2015, 36:39518[19]. Soleiman-Beigi M., Arzehgar Z. Monatsh Chem., 2016, 147:175919[20]. Soleiman‑Beigi M., Arzehgar Z. Heteroatom Chem., 2016, 26:35520[21]. Sheikhshoaie I., Davary, S., Ramezanpour S. Chemical Methodologies, 2018, 2:4721[22]. Rahnama A., Gharagozlou M. Optical and Quantum Electronics, 2012, 44:31322[23]. Yu Y., Zhang, J. Materials Letters, 2009, 63:184023[24]. Safarifard V., Morsali A., Ultrasonics Sonochemistry, 2012, 19:82324[25]. Zhu J., Bi H., Wang Y., Wang X., Yang X., Lu L. 2007. Materials Letters, 2007, 61:523625[26]. Battez A.H., González R., Viesca J.L., Fernández J.E., Fernández J.D., Machado A., Chou R. and Riba J., Wear, 2008, 265:42226[27]. Nasrollahzadeh M., Sajadi S.M., Maham M. RSC Advances, 2015, 5:4062827[28]. Yu T., Cheong F.C., Sow C.H. Nanotechnology, 2004, 15:173228[29]. Pansambal S., Deshmukh K., Savale A., Ghotekar S., Pardeshi O., Jain G., Aher Y., Pore D. J Nanostruct., 2017, 7:16529[30]. Borgohain J.B., Singh M.V., Ramarao, T., Shripathi S., Mahamuni. Phys. Rev., 2000, 61:1109330[31]. Cao M., Wang Y., Guo C., Qi Y., Hu C., Wang E. Journal of nanoscience and nanotechnology, 2004, 4:82431[32]. Keßler M.T., Robke S., Sahler S., Prechtl M.H. Catalysis Science & Technology, 2014, 4:10232[33]. Wang H., Xu J.Z., Zhu J.J., Chen H.Y. Journal of crystal growth, 2002, 244:8833[34]. Jayaprakash J., Srinivasan N., Chandrasekaran P., Girija E.K. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 136:180334[35]. Xu J.F., Ji W., Shen Z.X., Tang S.H., Ye X.R., Jia D.Z., Xin X.Q. Journal of Solid State Chemistry, 1999, 147:51635[36]. Umadevi M., Christy A.J. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 109:13336[37]. Salavati-Niasari M., Davar F. Materials Letters, 2009, 63:44137[38]. Shende R., Subramanian S., Hasan S., Apperson S., Thiruvengadathan R., Gangopadhyay K., Gangopadhyay S., Redner P., Kapoor D., Nicolich S., Balas W. Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials, 2008, 33:12238[39]. Vijaya Kumar R., Elgamiel R., Diamant Y., Gedanken A., Norwig J. Langmuir, 2001, 17:140639[40]. Varshney R., Bhadauria S., Gaur M.S. Nano Biomedicine & Engineering, 2012, 440[41]. Lingaraju K., Naika H.R., Manjunath K., Nagaraju G., Suresh D., Nagabhushana H. Acta Metallurgica Sinica (English Letters), 2015, 28:113441[42]. Aher Y.B., Jain G.H., Patil G.E., Savale A.R., Ghotekar S.K., Pore D.M., Pansambal S.S., Deshmukh K.K. Int. J. Mole. And Clin. Micro., 2017, 7:77642[43]. Sharma J.K., Akhtar M.S., Ameen S., Srivastava P., Singh G. Journal of Alloys and Compounds, 2015, 632:32143[44]. Pansambal S., Gavande S., Ghotekar S., Oza R., Deshmukh K. Int. J. Sci. Rre. Sci. Tech., 2017, 3:138844[45]. Pansambal S., Ghotekar S., Oza R., Deshmukh K. Int. J. Sci. Rre. Sci. Tech., 2019, 5:12245[46]. Gunalan S., Sivaraj R., Venckatesh R. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 97:114046[47]. Naika H.R., Lingaraju K., Manjunath K., Kumar D., Nagaraju G., Suresh D., Nagabhushana H. Journal of Taibah University for Science, 2015, 9:747[48]. Sankar R., Maheswari R., Karthik S., Shivashangari K.S., Ravikumar V. Materials Science and Engineering: C, 2014, 44:23448[49]. Jayakumarai G., Gokulpriya C., Sudhapriya R., Sharmila G., Muthukumaran C. Applied Nanoscience, 2015, 5:101749[50]. Brilhante R.S.N., Sales J.A., Pereira V.S., Castelo D.D.S.C.M., de Aguiar Cordeiro R., de Souza Sampaio C.M., Paiva M.D.A.N., dos Santos J.B.F., Sidrim J.J.C., Rocha M.F.G. Asian Pacific journal of tropical medicine, 2017, 10:62150[51]. Wiegand I, Hilpert K, Hancock REW. Nature Protocols, 2008, 3:16351[52]. Ijaz F., Shahid S., Khan S.A., Ahmad W., Zaman S. Tropical Journal of Pharmaceutical Research, 2017, 16:74352ORIGINAL_ARTICLEMagnetic nanoparticles - a promising tool for targeted drug delivery systemOver the last decade, nanotechnology has brought great development in the biomedical field. This study reviewed some physical and chemical characteristic of magnetic nanoparticles that are crucial for medical applications. Advances in preparation of magnetic nanoparticles have some superior applications in hyperthermia, magnetic drug delivery, gene delivery, and magnetic resonance imaging. It was found that, the bio-distribution, pharmacokinetic, and biocompatibility magnetic nanoparticles can be affected by their physicochemical properties, size, shape, and surface chemistry.https://www.ajnanomat.com/article_93067_dcd1554c5adc93001cc441999961900b.pdf2020-01-01T11:23:202020-07-11T11:23:20243710.26655/AJNANOMAT.2020.1.3Magnetic nanoparticlesBiomedicalHyperthermiaGene deliveryPrakrutiAmin[email protected]true1Prakruti Amin, Sal Institute of Pharmacy, Pharmaceutics Dept. Nr. Science City, Ahmedabad, Gujarat-IndiaPrakruti Amin, Sal Institute of Pharmacy, Pharmaceutics Dept. Nr. Science City, Ahmedabad, Gujarat-IndiaPrakruti Amin, Sal Institute of Pharmacy, Pharmaceutics Dept. Nr. Science City, Ahmedabad, Gujarat-IndiaLEAD_AUTHORManishPateltrue2Manish Patel L.M.College of Pharmacy, Pharmaceutics Dept. Navrangpura, Ahmedabad-Gujarat-IndiaManish Patel L.M.College of Pharmacy, Pharmaceutics Dept. Navrangpura, Ahmedabad-Gujarat-IndiaManish Patel L.M.College of Pharmacy, Pharmaceutics Dept. Navrangpura, Ahmedabad-Gujarat-IndiaAUTHOR[1]. Goesmann H., Feldmann C. Chem. Int. Ed., 2010, 49:13621[2]. Abolfazl A., Mohamad S., Soodabeh D. Nanoscale Research Letters, 2012, 7:1442[3]. Vashist S.K. J. Nanomed Nanotechol, 2013, 4:1000e1303[4]. Yadollahpour A. Orient. J. Chem., 2015, 31: 254[5]. Jordan A., Scholz R., Wust P., Fähling H., Felix R. Journal of Magnetism and Magnetic Materials, 1999, 201:4135[6]. Kolhatkar A.G., Jamison A.C., Litvinov D., Willson R.C., Lee. T.R. International Journal of Molecular Sciences, 2013, 14:159776[7]. Sun C., Lee J.S., Zhang M. Adv Drug Deliv Rev, 2008, 60:12527[8]. Veiseh O., Gunn J.W., Zhang M. Adv Drug Deliv Rev., 2010, 62:2848[9]. Chomoucka J., Drbohlavova J., Huska D., Adam V., Kizek R., et al. Pharmacol Res, 2010, 62:1449[10]. Ali Y., Morcos S.K., Anderson P.B. Material Science ResearchIndia, 2014, 11:10210[11]. Morcos S.K. Br J Radiol, 2007, 80:7311[12]. Ersoy H., Rybicki F.J. J Magn Reson Imaging, 2007, 26:119012[13]. Muldoon L.L., Sandor M., Pinkston K.E., Neuwelt E.A. Neurosurgery, 2005, 57:78513[14]. Stuart C.M., Yiu H., Dobson J. International journal of Nanomedicine, 2008, 3:16914[15]. Mody V., Cox A., Shah S., et al. Appl Nanosci, 2014, 4:38515[16]. Murray C.B., Norris D.J., Bawendi M.G. J. Am. Chem. Soc., 1993, 115:870616[17]. Peng X.G., Manna L., Yang W.D., Wickham J., Scher E., et al. Nature, 2000, 404: 5917[18]. Cui R., Han Z., and Zhu J.J. A European Journal. 2011, 17:937718[19]. Wang, X., Wang Z., Guo W., Kuang X., Hou, Hong zhuo Liu Sh. Chem. Commun., 2012, 48: 481219[20]. Khan K., Rehman S., Rahman H.U., Khan Q. Nanomagnetism, 2015, 13620[21]. Thorek D.L., Chen A.K., Czupryna J., Tsourkas A. Annals of biomedical engineering, 2006, 34:2321[22]. Gupta A.K., M. Gupta, Biomaterials, 2005, 26:399522[23]. Shaw S.Y., Chen Y.J., Ou J.J., Ho L. Enzyme Microb. Technol., 2006, 39:108923[24]. Indira T.K., Lakshmi P.K. International Journal of Pharmaceutical Sciences and Nanotechnology, 2010, 3:103524[25]. Rudin M., Weissleder, Nat Rev Drug Discov, 2003, 2:12325[26]. Gu H.W., Zheng R.K., Zhang X.X., Xu B. J. Am Chem Soc., 2004, 126:566426[27]. Sun S.H., Zeng H., Robinson D.B., Raoux S., Rice P.M., Sun S., Zeng H., Robinson D.B., Raoux S., Rice P.M., Wang S.X., Li G. J. Am. Chem. Soc., 2004, 126:27327[28]. Akbarzadeh A., Samiei M., Davaran S. Nanoscale Research Letters, 2012, 7:14428[29]. Biehl P., Lühe M. , Dutz S., Felix H. Polymers, 2018, 10:9129[30]. Zeng Q., Baker I., Loudis, J.A., Liao Y., Hoopes P.J., Weaver J.B. Appl. Phys. Lett., 2007, 90:23311230[31]. Kayal S., Ramanujan R.V. Sci. Eng., 2010, 30:48431[32]. Hu F.X., Neoh K.G., Kang E.T. Biomaterials, 2006, 27:572532[33]. Parvin S., Matsui J., Sato E., Miyashita T. J. Sci., 2009, 313:12833[34]. Shubayev V.I., Pisanic T.R., Jin S.H. Adv Drug Deliv Rev., 2009, 61:46734[35]. Gruttner C., Rudershausen S., Teller .J Magn Mater, 2001, 225:135[36]. Nitin N., LaConte L.E.W., Zurkiya O. J Biol Inorg Chem., 2004 9:70636[37]. Chen YH, Liu YY, Lin RH, Yen FS. J Appl Polym Sci., 2008,108:58337[38]. Jiri K., Yazan H., Lukas R. et al., Nanomaterials, 2017, 7:243.38[39]. Bhatia S. Natural Polymer Drug Delivery Systems, 2016, 33:9339[40]. Sun C., Lee J.S., Zhang M. Advanced drug delivery reviews, 2008, 60: 1252 40[41]. Devitt M.R., Chattopadhyay D., Kappel B.J., Jaggi J.S., Schiffman S.R., Antczak C. J. Nucl. Med., 2007, 48:1180 41[42]. Jun L., Chunyan H., Quanguo H. (2015) Science of Advanced Materials, 2015, 7:67242[43]. Singh N., Jenkins G. J. S., Asadi R., Doak S. H. NanoReviews, 2010, 1:5343ORIGINAL_ARTICLEBio-synthesis of iron oxide nanoparticles using neem leaf cake extract and its influence in the agronomical traits of vigna mungo plantIn this work reports the synthesis of iron oxide along with the complex formation from the neem cake using the biosynthesis and precipitation method. Ferrous sulphate (FeSO4) and sodium hydroxide were used as the precursor precipitating agent, respectively. The resultant specimens were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), ultra-violet visible spectroscopy (UV-Vis), fourier-transform infrared spectroscopy (FT-IR), soil test, biochemical, and phytochemical analysis. To test the effect of the synthesized specimen as the nanofertilizer in the seed germination and the growth, the sample was incorporated in to the red soil and the agronomical traits including plant height. Number of leaves were studied over a survival period of 75 days of the selected plant species vigna mungo using POT analysis. The plant samples were harvested, and then the biochemical and phytochemical studies were carried out for alkaloids, glycosides, flavonoids, phenols, steroids, protein and total chlorophyll content. The results showed that the nanoparticles incorporation enhanced the plant growth and increased the concentration of the bioactive compounds in an appreciable level.https://www.ajnanomat.com/article_95586_e6fdc17c8f65ed84c6a2846e00c49e1d.pdf2020-01-01T11:23:202020-07-11T11:23:20384610.26655/AJNANOMAT.2020.1.4BiosynthesisNeem cakeBiochemicalPhytochemicalMorphological studiesRameshRadhakrishnan[email protected]true1Department of Physics, Sacred Heart College (Autonomous), Tirupattur, Tamil Nadu, IndiaDepartment of Physics, Sacred Heart College (Autonomous), Tirupattur, Tamil Nadu, IndiaDepartment of Physics, Sacred Heart College (Autonomous), Tirupattur, Tamil Nadu, IndiaLEAD_AUTHORDhanarajLakshmitrue2Department of Physics, Sacred Heart College (Autonomous), Tirupattur, Tamil Nadu, IndiaDepartment of Physics, Sacred Heart College (Autonomous), Tirupattur, Tamil Nadu, IndiaDepartment of Physics, Sacred Heart College (Autonomous), Tirupattur, Tamil Nadu, IndiaAUTHORFaize LiakathAli Khantrue3Department of Physics, Islamiah College (Autonomous), Vaniyambadi, VelloreDepartment of Physics, Islamiah College (Autonomous), Vaniyambadi, VelloreDepartment of Physics, Islamiah College (Autonomous), Vaniyambadi, VelloreAUTHORGopalRamalingamtrue4Quantum Materials Research Lab (QMRL), Department of Nanoscience and Technology, Alagappa University, Karaikudi - 630003, Tamil Nadu, IndiaQuantum Materials Research Lab (QMRL), Department of Nanoscience and Technology, Alagappa University, Karaikudi - 630003, Tamil Nadu, IndiaQuantum Materials Research Lab (QMRL), Department of Nanoscience and Technology, Alagappa University, Karaikudi - 630003, Tamil Nadu, IndiaAUTHORKasinathanKaviyarasu[email protected]true5Nanoscience’s/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria, South Africa|Nanoscience ’s African Network (NANOAFNET), Materials Research Group (MRG), iThemba LABS - National Research Foundation (NRF), Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province, Cape Town, South AfricaNanoscience’s/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria, South Africa|Nanoscience ’s African Network (NANOAFNET), Materials Research Group (MRG), iThemba LABS - National Research Foundation (NRF), Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province, Cape Town, South AfricaNanoscience’s/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria, South Africa|Nanoscience ’s African Network (NANOAFNET), Materials Research Group (MRG), iThemba LABS - National Research Foundation (NRF), Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province, Cape Town, South AfricaAUTHOR[1]. Ritchie J.T., Johnson A., Stewart B.A., Nielsen D.R. American Society of Agronomy, 1990, 53:3691[2]. Sharifi R.S., Khavazi K. Journal of Food, Agriculture and Environment, 2011, 9:4962[3]. Finch Savage W.E., Dent K.C., Clark L.J. Field Crops Research, 2004, 90:3613[4]. Zhou Y., Lin W., Huang J. Nanoscale Research Letters, 2010, 5:13514[5]. Shanmugam S., Radhika T., Jothiramalingam R., Mutharasu D. International Journal of Nanoparticles, 2013, 6:3505[6]. Corradini E., Moura M.R., Mattoso L.H.C. EXPRESS Polymer Letters, 2010, 4:5096[7]. Nosheen Elahi N., Saima Mustafa P., Javed Mirza I. Journal of Research (Science), 2010,15:1397[8]. Atiyeh R.M., Edwards C.A., Metzger J.D., Lee S., Arancon N.Q. Biores. Technol., 2002, 84:78[9]. Ting W., Xiaoying J., Zuliang C., Mallavarapu M., Ravendra N. Science of the Total Environment, 2014, 466:2109[10]. Kuhn L.T., Bojesen A., Timmermann L., Nielsen M.M., Morup S. Journal of Condensed matter Physics, 2002, 14:1355110[11]. Machado S., Pinto S.L, Grosso J.P., Nouws H.P.A., Albergaria J.T., Delerue Matos C. Science of Total Environment, 2013, 8:44511[12]. Pratyoosh S., Jaya B., Smriti S. International Journal of Microbiology Research, 2011, 3:7112[13]. Nakashima T., Fukuda H., Kyotani S., Morikawa H., Journal of Fermentation13Technology., 1988, 66:44114[14]. Ramachandran S., Singh S.K., Larroche C., Soccol C.R., Pandey A., Bioresource Technology., 2007, 98:21415[15]. Pandey A., Soccol C.R., Mitchell D. Bioprocesses and products: Process Biochem., 200, 35:15316[16]. Ozçimen D., Karaosmanoglu F. Renewable Energy, 2004, 29:77917[17]. Di L., Capra M., Ribeiro F., Vargas N.P., Freire G.L., De Oliveira D.M. Appl. Biochem. Biotechnol-Part A Enzyme Eng. Biotechnology, 2004, 113:17318[18]. Ma X.M., Geiser Lee J., Deng Y., Kolmakov A. Science of Total Environment, 2010, 408: 305319[19]. Vanathi P., Rajiv N., Rajeshwari S., Pattanathu K.S., Venckatesh R. Mater. Letter., 2014, 134:1320[20]. Manivasagaperumal R., Vijayarengan P., Balamurugan S., Thiyagarajan G. International Journal of Recent Scientific Research, 2012, 3:68721[21]. Liu X.M., Zhang F.D., Zhang S.Q., He X.S., Fang R., Feng Z. Plant Nutrition and Fertilizer Science, 2005, 11:1422[22]. Shenu H.E., Kwari J.D., Sandbe M.K. International Journal of Agriculture & Biology, 2015, 25:12523[23]. Nasrollahzadeh A., Open Journal of Ecology, 2017, 7:10124[24]. Subba Reddy Y., Maria Magdalane C., Kaviyarasu K., Genene Tessema M., Kennedy J., Maaza M. Journal of Physics and Chemistry of Solids, 2018, 123:4325[25]. Kaviyarasu K., Devarajan P.A., Xavier S.J., Thomas S.A., Selvakumar S. Journal of Materials Science & Technology, 2012, 28:1526[26]. Judith Vijaya J., Jayaprakash N., Kombaiah K., Kaviyarasu K., John Kennedy L., Jothi Ramalingam R., Hamad A., Mansoor-Ali V.M., Maaza M. Journal of Photochemistry and Photobiology B: Biology. 2017, 177:6227[27]. Angel Ezhilarasi A., Judith Vijaya J., Kaviyarasu K., John Kennedy L., Jothi Ramalingam R., Hamad A. Journal of Photochemistry and Photobiology B: Biology, 2018, 180:3928[28]. Iyyappa Rajan P., Judith Vijaya J., Jesudoss S.K., Kaviyarasu K., John Kennedy L., Jothiramalingam R., Hamad A., Mansoor A. Materials Research Express, 2017, 4:08503029[29]. Jesudoss S.K., Judith Vijaya J., Iyyappa Rajan P., Kaviyarasu K., Sivachidambaram M., John Kennedy L., Hamad A., Jothiramalingam R., Murugan A. Photochemical & Photobiological Sciences, 2017, 16:76630[30]. Saritha V., Paul A., Mariadhas V., Naif Abdullah A., Abdul K., Ghilan M., Kaviyarasu K., Balasubramani R., Soon W., Arokiyaraj S. Journal of Photochemistry and Photobiology B: Biology, 2019, 191:6531[31]. Kanimozhi K., KhaleelBasha S., SuganthaKumari V., Kaviyarasu K. Journal of nanoscience and Nanotechnology, 2019, 19:249332[32]. Raja A., Selvakumar K., Rajasekaran P., Arunpandian M., Ashokkumar S., Kaviyarasu K., Asath Bahadur S., Swaminathan M. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 564:2333ORIGINAL_ARTICLEInfluence of atomizing voltage on fluorine doped tin oxide via spray pyrolysis techniqueSynthesis and characterization fluorine-doped tin oxide thin film using spray pyrolysis were coated on a glass substrate by varying the atomizing voltage. The XRD analysis was carried out and the results showed that the deposited films are polycrystalline in nature having the characteristic peaks of tetragonal structure of SnO2. The observed peaks are (110), (101), (200), (211) and the preferential growth was found to be (110) direction. The I/V plots of the material deposited with 3.8 kV, 4.0 kV and 4.2 kV, which represent sample FT1-FT3 showed a non-linear plot and observed to be a non Ohmic semiconducting material. It was also noticed that as the atomizing voltage of the depositing material increases the thickness of the films increases. The resistivity of the material deposited increases and decreases at 4.0 kV as the atomizing voltage and thickness of the films increases. The electrical conductivity of the material deposited increases with respect to the atomizing voltage and thickness, respectively. It was observed that as the optical absorbance and reflectance decreased the wavelength of the incident radiation and transmittance enhanced as the wavelength of the incident radiation increased and the band gap energy of the films were observed to be at the range of 2.70-3.10 eV.https://www.ajnanomat.com/article_95889_ab742ed4236926fa6a22d7a06555166a.pdf2020-01-01T11:23:202020-07-11T11:23:20475710.26655/AJNANOMAT.2020.1.5spray pyrolysisFluorineTin OxideXRDOptical propertiesEbube G.Agbimtrue1Department of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, AwkaDepartment of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, AwkaDepartment of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, AwkaAUTHORImosobomeh L.Ikhioya[email protected]true2Department of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, Awka|Crystal Growth and Material Science Laboratory/Department of Physics and Astronomy, Faculty of Physical Sciences, University of Nigeria, Nsukka, NigeriaDepartment of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, Awka|Crystal Growth and Material Science Laboratory/Department of Physics and Astronomy, Faculty of Physical Sciences, University of Nigeria, Nsukka, NigeriaDepartment of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, Awka|Crystal Growth and Material Science Laboratory/Department of Physics and Astronomy, Faculty of Physical Sciences, University of Nigeria, Nsukka, NigeriaLEAD_AUTHORAzibuike J.Ekpunobitrue3Department of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, AwkaDepartment of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, AwkaDepartment of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, AwkaAUTHOR[1]. Shanthi S., Subramanian C., Ramasamy P. Journal of Crystal Growth, 1999, 197:8581[2]. Abdullahi S., Moreh A.U., Hamza B., Wara M.A., Kamaluddeen H., Kebbe M.A., Monsuorat U.F. International Journal of Recent Research in Physics and Chemical Sciences, 2015, 1:12[3]. Chamberlin R.R., Skarman J.S. Journal of the Electrochemical Society, 1966, 113:863[4]. Filipovic L., Siegfried S., Giorgio C.M., Elise B., Stephan S., Anton K., Jordi T., Jochen K., Jorg S., Franz S. Microelectronics Engineering, 2013, 117:574[5]. Hongli Z. International Journal of Applied Glass Science, 2013, 4:2425[6]. Jariwala C., Dhivya M., Rane1 R., Chauhan N., Rayjada P.A., Raole P.M., John P.I. Journal of Nano and Electronics Physics,2013, 5:16[7]. Jaworek A., Sobczyk A.T., Krupa A., Lackowski M., Czech T. Journal of Technical Sciences, 2009, 57:637[8]. Babar A.R., Shinde S., Moholkar A.V., Bhosale C.H., Kim J.H., Rajpure K.Y. Journal of Semiconductors, 2011, 32:18[9]. Patrick M.M., Musembi R., Munji M., Odari B., Munguti L., Ntilakigwa A.A., Nguu J., Aduda B., Muthoka B. Advances in materials, 2015, 4:519[10]. Mwathe P.M., Musembi R., Munji M., Odari B., Munguti L., Ntilakigwa A.A., Nguu J., Aduda B., Muthoka B. Advances In Materials, 2014a, 3:3810[11]. Odari B.M., Musembi R.J., Mageto M.J., Othieno H., Gaitho F., Mghendi M., Muramba V. American Journal of Materials Science., 2013, 3:9111[12]. Subramanian N.S., Santhi B., Sundareswaran S., Venkatakrishnan K.S. Metal-Organic and Nano-Metal Chemistry., 2006, 36:13112[13]. Ravichandran k., Muruganantham G., Sakthivel B., Philominathan P. Journal of Ovonic Research, 2009, 5:6313[14]. Dainius P., Ludwig J.G. Journal of Electroceramics, 2005, 14:10314[15]. Balkenende A.R., Bogaerts A., Scholtz J.J., Tijburg R.M., Willems H. Philips Journal of Research, 1996, 50:36515[16]. Jaworek A., Sobczyk A.T., Krupa A., Lackowski M., Czech T. Journal of Technical Sciences, 2009, 57:6316[17]. Kandasamy P., Lourdasamy A. International Journal of Physics, 2014, 9:26117[18]. Yadav A.A., Masumdar E.U., Moholkar A.V., Neumann-Spallart M., Rajpure K.Y., Bhosale C.H. J. Alloys Compd., 2009, 488:35018[19]. Noh S.I., Ahn H.J., Riu D.H. Ceramics Int., 2012, 38:373519[20]. Chantarat N., Yu-Wei C., Shu-Han H., Chin-Ching L., Mei-Ching C., San-Yuan C. ECS Journal of Solid State Science and Technology, 2013, 2:13120[21]. Arle R.N., Khatik B.L. International Journal of Chemical and Physical Sciences, 2014, 3:8321[22]. Agbim E.G., Ikhioya I.L., Agbakwuru C.B., Oparaku O., Ugbaja C.M. International Journal of Scientific & Engineering Research, 2019, 10:70722[23]. Sharma A., Prakah D., Verma K.D. Optoelectronics and Advanced Materials-Rapid Communications, 2007, 1:68323[24]. Jeyasubramanian K.T., Gokul S.R. Achievers of Material Science and Engineering, 2016, 78:6624[25]. Kar S., Kundoo S. International Journal of Science and Research, 2015, 4:53025[26]. Karthick P., Divya V., Suja S., Sridharan M., Jeyadheepan K., Asian Journal of Applied Sciences, 2015, 8:25926[27]. Kandasamy P., Lourdasamy A. International Journal of Physics, 2014, 9:26127[28]. Napi M.L., Maarof M.F., SoonC.F., Nayan N., Fazli I.M., Hamed K.A, Mokhtar S.M., Seng N.K., Ahmad M.K., Suriani A.B., Mohamed A. Journal of Engineering and Applied Science, 2016, 11:880028[29]. Saipriya M., Sultan R., Singh I. Physica B: 2011, 406:81229[30]. Yadav A.A., MasumdarE.U., Moholkar A.V., Neumann-Spallart M., Rajpure K.Y., Bhosale C.H. J. Alloys Compd, 2009, 488:35030[31]. Ziad Y. B, Kelly P. J., Glen W., Boardman J. Coatings, 2014, 4:73231[32]. Agbim E. G., Ikhioya I.L., Ekpunobi A.J. IOSR Journal of Applied Physics, 2019, 11:7032[33]. Kim K.S., Yoon S.Y., Lee W.J., Kim K.H. Surface and Coatings Technology, 2001, 138:22933ORIGINAL_ARTICLEBiosynthesis of silver nanoparticles using leaf and bark extract of indian plant carissa carandas, characterization and antimicrobial activityBiosynthesized silver nanoparticle is a very expanding and useful area. The reductant material in the plant extracts (leaves and bark) of Carissa carandas can produce silver nanoparticles. The plant leaves and bark extract of Carissa caranadas act as reducing and capping agent. Conventionally, chemical reduction is the most frequently applied approach for preparation of metallic nanoparticles; however, it might be hazardous to environment. In the present work we report eco-friendly, cost effective, and green approach for the synthesis of AgNPs by using 0.02 M AgNO3 solution and plant extracts (leaves and bark) of Carissa caranadas as reducing and capping agent. The synthesized nanoparticles were characterized using UV-VIS spectrophotomer, XRD, FT-IR, FE-SEM, and ICP-AES analysis. The biosynthesized silver nanoparticles showed a comparable antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Aspergillus niger. Antimicrobial activity of the biosynthesized silver nanoparticles suggests their possible application in medical and pharmaceuticals industry.https://www.ajnanomat.com/article_96487_14cacc20f1655d9704fb85f9a12300ed.pdf2020-01-01T11:23:202020-07-11T11:23:20586610.26655/AJNANOMAT.2020.1.6Green synthesisSilver nanoparticlesUV-Visible SpectrophotometerFT-IRICP-AESAntimicrobial activitySatish B.Manjare[email protected]true1Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. IndiaDepartment of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. IndiaDepartment of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. IndiaLEAD_AUTHORSandip G.Sharma[email protected]true2Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. IndiaDepartment of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. IndiaDepartment of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. IndiaAUTHORVijay L.Gurav[email protected]true3Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. IndiaDepartment of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. IndiaDepartment of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. IndiaAUTHORMamata R.Kunde[email protected]true4Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. IndiaDepartment of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. IndiaDepartment of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. IndiaAUTHORSneha S.Patil[email protected]true5Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. IndiaDepartment of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. IndiaDepartment of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. IndiaAUTHORShankar R.Thopate[email protected]true6Department of Chemistry, Shree Sadguru Gangageer Maharaj Science Gautam Arts & Sanjivani Commerce College, Kopargaon, Dist-Ahmednagar 423601, M.S. IndiaDepartment of Chemistry, Shree Sadguru Gangageer Maharaj Science Gautam Arts & Sanjivani Commerce College, Kopargaon, Dist-Ahmednagar 423601, M.S. IndiaDepartment of Chemistry, Shree Sadguru Gangageer Maharaj Science Gautam Arts & Sanjivani Commerce College, Kopargaon, Dist-Ahmednagar 423601, M.S. IndiaLEAD_AUTHOR[1]. Li X., Zhu T., Shao Z., Li Y., Chang H., Gao W., et al. Tetrahedron. 2016, 72:691[2]. Gurunathan S. Arab J Chem., 2019, 12:1682[3]. Banerjee P., Satapathy M., Mukhopahayay A., Das P. Bioresour Bioprocess. 2014, 1:13[4]. Nemamcha A., Moumeni H., Rehspringer J.L. Phys. Procedia., 2009, 2:7134[5]. Sharma M., Sarma P.J., Goswami M.J., Bania K.K. J Colloid Interface Sci., 2017, 490:5295[6]. De Castro K.A., Rhee H. J Incl Phenom Macrocycl Chem. 2015, 82:136[7]. Kora A.J., Rastogi L. Arab J Chem. 2018, 11:10977[8]. Santoshi kumari A., Venkatesham M., Ayodhya D., Veerabhadram G. Appl Nanosci. 2015, 5:3158[9]. Singhal G., Bhavesh R., Kasariya K., Sharma A.R., Singh R.P. J Nanoparticle Res., 2011, 13:29819[10]. Gavhane A., Padmanabhan P., Kamble S., Jangle S. Int J Pharma Bio Sci., 2012, 3:8810[11]. Kalpana D., Han J.H., Park W.S., Lee S.M., Wahab R., Lee Y.S. Arab J Chem . 2014, 12:172211[12]. Krishnaraj C., Muthukumaran P., Ramachandran R., Balakumaran M.D., Kalaichelvan P.T. Biotechnol Reports., 2014, 4:4212[13]. Deshmukh S.R., Ashrit D.S., Patil B.A. Int J Pharm Pharm Sci., 2012, 4:32913[14]. Siddiqi K.S., Husen A. Nanoscale Res. Lett., 2016, 11:48214[15]. Gurunathan S., Kim E.S., Han J.W., Park J.H., Kim J.H., Grumezescu A.M. Molecules. 2015, 20:2247615[16]. Mallikarjuna K., John Sushma N., Narasimha G., Manoj L., Deva Prasad Raju B. Arab J Chem., 2014, 7:109916[17]. Satapathy M.K., Banerjee P., Das P. Appl Nanosci., 2015, 5:117[18]. Padalia H., Moteriya P., Chanda S. Arab J Chem., 2015, 8:73218ORIGINAL_ARTICLEComputational approach of palladium (II) complex ions with binuclear diamine ligands thermo-physical, chemical, and biological properties: a dft studyIncomputational chemistry through various basis sets, it is possible to design new molecules and discuss their use through their physical, chemical, biochemical studies. Chemical activity, biological activity, physical chemical activities can be diagnosed using density functional theory (DFT) for some palladium (II) complex ions. In this research study, the optimized dihydrazine palladium (II) complex ion (L01), di(1, 2- diaminemethane) palladium (II) complex ion (L02), di(1, 2- diamineethane) palladium (II) complex ion (L03), and di (1, 2- diamine propane) palladium (II) complex ion (L04) were simulated. Finally a comparative study of the palladium (II) complex ions were designed to show what ions are biologically more active using their QSAR data and orbital diagrams for HOMO and LUMO of the study of electronic properties. The HOMO-LUMO gap was also evaluated for chemical reactivity. The PIC50 value was calculated using the QSAR data where the value of L01, L02, and L03 L04 where -15.757, 13.128, -6.111 and -5.955, respectively. If PIC50 is below -6, then the compound is said to be biologically active. It was found that, the L04 is highly biological active and L03 is almost similar to L04. Also, by enhancing the methyl group in palladium chain, the biological activity increased.https://www.ajnanomat.com/article_96587_1dc73366f5706319b23d5105850cd227.pdf2020-01-01T11:23:202020-07-11T11:23:20678110.26655/AJNANOMAT.2020.1.7Palladium (II)DFTQSARHOMOLUMOVibrational spectroscopyElectronic spectroscopyMohammad JahidulIslam[email protected]true1Department of Physics, European University of Bangladesh, Dhaka-1216, BangladeshDepartment of Physics, European University of Bangladesh, Dhaka-1216, BangladeshDepartment of Physics, European University of Bangladesh, Dhaka-1216, BangladeshAUTHORSunandaPaul[email protected]true2Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong,Hathazari-4334, BangladeshDepartment of Biochemistry and Molecular Biology, University of Chittagong, Chittagong,Hathazari-4334, BangladeshDepartment of Biochemistry and Molecular Biology, University of Chittagong, Chittagong,Hathazari-4334, BangladeshAUTHORAjoyKumer[email protected]true3Department of Chemistry, European University of Bangladesh, Dhaka-1216, BangladeshDepartment of Chemistry, European University of Bangladesh, Dhaka-1216, BangladeshDepartment of Chemistry, European University of Bangladesh, Dhaka-1216, BangladeshLEAD_AUTHORMd NuruzzamanSarker[email protected]true4Department of Physics, European University of Bangladesh, Dhaka-1216, BangladeshDepartment of Physics, European University of Bangladesh, Dhaka-1216, BangladeshDepartment of Physics, European University of Bangladesh, Dhaka-1216, BangladeshAUTHOR[1]. Chen X., Engle K.M., Wang D.H., Yu J.Q. Angewandte Chemie International Edition, 2009, 48:50941[2]. Lazarević T.R., Bugarčić A., Živadin D. European journal of medicinal chemistry, 2017, 142:82[3]. Ray S.M., Singh R., Jay K., Samantaray Manoja K., Shaikh Mobin M., Panda D., Ghosh P. Journal of the American Chemical Society, 2007, 129:150423[4]. Ajoy Kumer M.N.S., Sunanda PAUL, International Journal of Chemistry and Technology, 2019, 3:264[5]. Ajoy Kumer M.N.S., Paul S., Zannat A. Advanced Journal of Chemistry-Section A, 2019, 2:1905[6]. Islam M.J., Sarker Md.N., Kumer A., Paul S. International journal of Advanced Biological and Biomedical Research, 2019, 7:3186[7]. Islam M.J., Kumer A., Sarker Md. N., Paul S., Zannat A. Advanced Journal of Chemistry-Section A, 2019, 2:3167[8]. Ajoy K., Paul S., Sarker Md.N., Islam M.J. International Journal of New Chemistry, 2019, 6:2368[9]. Ajoy K., Sarker Md.N., Pual S. Eurasian Journal of Environmental Research, 2019, 3:19[10]. Islam M.J., Sarker Md.N., Kumer A., Paul S., International journal of Advanced Biological and Biomedical Research, 2019, 7:30610[11]. Kumer A., Ahmed B., Sharif Md.A., Al-Mamun A. Asian Journal of Physical and Chemical Science, 2017, 4:111[12]. Sarker Md.N., Ajoy K., Islam M.J., Sunanda P. Asian Journal of Nanoscience and Materials, 2019, 2:43912[13]. Miyaura N., Suzuki A. Chemical eviews, 1995, 95:245713[14]. Miyaura N., Yanagi T., Suzuki A. Synthetic Communications, 1981, 11:51314[15]. Hossain M.I., Ajoy K. Asian Journal of Chemical Science, 2018, 3:115[16]. Kumer A., Ahmed B., Sharif M.A., Al-Mamun A. Asian Journal of Physical and Chemical Science, 2017, 4:116[17]. Garrett C.E., Prasad K. Advanced Synthesis & Catalysis, 2004, 346:88917[18]. Doucet H., Hierso J.C. Currentopinion in drug discovery & development, 2007, 10:672 [19]. Ajoy K., Sunanda P., Sarker N.Md., Islam J.M. International Journal of New Chemistry, 2019, 6:23618[20]. Howard A., McIver J., Collins J. Hyperchem computational chemistry. Hypercube Inc., Waterloo 199419[21]. Koopmans Y.T. Physica, 1934, 1:10420[22]. Parr R.G., Szentpály L.V., Liu S. Journal of the American Chemical Society, 1999, 121:192221[23]. Canadell S., Pouget J.P., Brossard L. Solid State Communications, 1990, 75:63322[24]. Zineb Almi S.B., Lanez T., Tchouar N. International Letters of Chemistry, Physics and Astronomy, 2014, 37:11323ORIGINAL_ARTICLEAn innovative approach delivery of anticonvulsant via transcranial route using a smart bio-functional agent cum musa acuminataEpilepsy is a central nervous system disorder (neurological disorder) in which the nerve cell activity in the brain becomes disrupted, causing unprovoked, recurrent seizures or unusual behavior, sensations or even unconsciousness. In this research work, Pregablin selected as a molecule for designing a emulgel using novel bio-functional agent and compared with standard polymer. This can be overcome by minimizing the dose and side-effects of API molecule used for various routes. The Pregablin loaded emulgel was prepared using novel bio-functional agent isolated from fruit pulp of Musa acuminata and with standard polymer (sodium alginate) with different ratios. The prepared formulations were evaluated for pH stability studies, % entrapment efficacy, in-vitro drug release and stability studies. The prepared emulgel was subjected to the best formulation based on comparison of above mentioned evaluation parameters, FM2 formulation was found to be the best formulation showing an R2 value of 0.9487, T50% of 23.52 h and T80% of 60.22 h respectively. According to the release kinetics, the best fit model was Peppas Korsmeyer with Fickian Diffusion (Higuchi Matrix) as the mechanism of drug release. Musa acuminata provided the excellent stability for the formulation. The results revealed that, uaing Musa acuminata as bio-functional agent was safe and compatible with drug, so Pregablin loaded emulgel can be more affective for brain targeting upon trans-cranial administration.https://www.ajnanomat.com/article_96791_c49734013b2c46b91c9e5ab7435a3c4e.pdf2020-01-01T11:23:202020-07-11T11:23:20829210.26655/AJNANOMAT.2020.1.8Bio-functional agentEmulgelEpilepsyMusa acuminataPregablinSatheeshMadhav[email protected]true1Faculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, IndiaFaculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, IndiaFaculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, IndiaAUTHORAbhinavDewari[email protected]true2Faculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, IndiaFaculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, IndiaFaculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, IndiaAUTHORYogitaTyagi[email protected]true3Faculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, IndiaFaculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, IndiaFaculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, IndiaLEAD_AUTHOR[1]. Guzel O. J of Bio Trace Ele Res., 2016, 178:11[2]. Marra V. Epilepsy Research, 2015, 10:62[3]. Khambhati A.N., Davis K.A, Oommen B.S, Chen S.H, Lucas T.H, Litt B. PLOS Computational Biology, 2015, 11:13[4]. Danzer S. Neuron Journal, 2012, 75:7394[5]. Pathirana W., Kariyawasam S.H., Tibbotumunwa H., Perera K. Indian J Pharm Sci., 2006, 68:4935[6]. Pathirana W., Abhayawadhana P., Kariyawasam S.H., Ratnasooriya W.D. Indian J. Pharm Sci., 2009, 71:2646[7]. Kamila S., Madhav N.V.S., Sarkar C.N. IJPSR., 2015, 6:10007[8]. Varshney S., Madhav N.V.S. J. Mol. Medi. and Clin App., 2017, 2:18[9]. Kotecha R.K., Bhadra S., Rajesh K.S. Int J of Phar and Pharmaceut Sci., 2013, 4:4909[10]. Francis D., Mouftah S., Steffen R., Beduneau A., Pellequer Y., Lamprech A. Eur J Pharm Biopharm., 2015, 89:5610[11]. Madhav N.V.S., Yadav A.P. Acta Pharmaceutica Sinica B., 2013, 6:40811[12]. Dattatraya S.M., Loknete J.D. Int. J. Phar. and Pharmaceut Sci., 2018, 10:9312