ORIGINAL_ARTICLE Photocatalytic degradation of malachite green dye under UV light irradiation using calcium-doped ceria nanoparticles In this study, photocatalytic activity of Ca-doped ceria (CDC) for malachite green (MG) degradation was investigated. CDC was successfully synthesized via co-precipitation method using ammonium oxalate as a precipitating agent. CDC was characterized using Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), UV-Vis spectroscopy, and scanning electron microscopy (SEM). The band gap energy (Eg) of CDC was found to be 3.96 eV. In addition, the factors affecting the photodegradation of MG including; irradiation time, photocatalyst dosage, initial dye concentration, and solution temperature were studied. The results revealed that CDC could degrade approximately 93% of MG dye at the concentration of 6 mg/L, irradiation time of 90 min, photocatalyst dosage of 0.1 g, and solution temperature of 35 °C. The obtained results indicate that CDC is a promising material for the photocatalytic applications and can be used to eliminate very toxic dyes such as MG. https://www.ajnanomat.com/article_92856_7418c11b95a9cf12a1349f7c69c4acc9.pdf 2020-01-01T11:23:20 2020-07-11T11:23:20 1 14 10.26655/AJNANOMAT.2020.1.1 dye photodegradation Nanostructured materials doped ceria catalyst Semiconductor Optical properties Ibrahim A. Amar [email protected] true 1 Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya |Central Laboratory at Sebha University, Sebha, Libya Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya |Central Laboratory at Sebha University, Sebha, Libya Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya |Central Laboratory at Sebha University, Sebha, Libya LEAD_AUTHOR Hebatallah M. Harara [email protected] true 2 Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya AUTHOR Qamrah A. Baqul [email protected] true 3 Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya AUTHOR Mabroukah A. Abdul Qadir [email protected] true 4 Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya AUTHOR Fatima A. Altohami [email protected] true 5 Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya AUTHOR Mohammed M. Ahwidi [email protected] true 6 Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya AUTHOR Ihssin A. Abdalsamed [email protected] true 7 Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya AUTHOR Fatema A. Saleh [email protected] true 8 Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya AUTHOR [1]. Mousavi M., Habibi-Yangjeh A., Pouran S. R. J. Mater. Sci. Mater. Electron.,2018, 29:1719 1 [2]. Chen Y., Zhang Y., Liu C., Lu A., Zhang W. Int. J. Photoenergy., 2012, 2012:1 2 [3]. Mohamed A., Ghobara M. M., Abdelmaksoud M. K., Mohamed G.G. Sep. Purif. Technol., 2019, 210:935 3 [4]. Gallego-Urrea J.A., Hammes J., Cornelis G., Hassellöv M. NanoImpact., 2016, 3-4:67 4 [5]. Dickhout J.M., Moreno J., Biesheuvel P.M., Boels L., Vos W.M.d., Lammertink R.G.H. J. Colloid Interface Sci., 2017, 487:523 5 [6]. Gnanam S., Rajendran V. J. Alloys Compd., 2018, 735:1854 6 [7]. Murugana R., Kashinath L., Subash R., Sakthivel P., Byrappa K., Rajendran S., Ravi G. Mater. Res. Bull., 2018, 97:319 7 [8]. Al-Anber Z.A., Al-Anber M.A., Matouq M., Al-Ayed O.O., Omari N.M.N.M. Desalination., 2011, 276:169 8 [9]. Amar I. A., Sharif A., Alkhayali M., Jabji M., Altohami F., AbdulQadir M., Ahwidi M.M. IJEE., 2018, 9:247 9 [10]. Awin L.A., El-Rais M.A., Etorki A.M., Mohamed N.A., Erhab H.M. Mater. Focus., 2018, 7:1 10 [11]. Feizpoor S., Habibi-Yangjeh A. , Yubuta K., Vadivelc S. Mater. Chem. Phys., 2019, 224:10 11 [12]. Markovic D., Milovanovic S., Radoicic M., Radovanovic Z., Zizovic I., Saponjic Z., Radetic M. J. Serb. Chem. Soc., 2018, 83:1379 12 [13]. Adepu A.k., Katta V., Venkatathri N. New. J. Chem., 2017, 41:2498 13 [14]. Pirhashemi M., Habibi-Yangjeh A., Pouran S.R. J. Ind. Eng Chem., 2018, 62:1 14 [15]. Ayodhya D., Veerabhadram G. Mater. Today. Energy., 2018, 9:83 15 [16]. Van Dao D., Nguyen T.T.D., Majhi S.M., Adilbish G., Lee H.J., Yu Y.T., Lee I.H. Mater. Chem. Phys., 2019, 231:1 16 [17]. Elahi B., Mirzaee M., Darroudi M., Oskuee R.K., Sadri K., Amiri M.S. Ceram. Int., 2019, 45:4790 17 [18]. Chandar N.K., Jayavel R. Physica E., 2014, 58:48 18 [19]. Channei D., Inceesungvorn B., Wetchakun N., Ukritnukun S., Nattestad A., Chen J., Phanichphant S. Sci. Rep., 2014, 4:5757 19 [20]. Goubin F., Rocquefelte X., Whangbo M.H., Montardi Y., Brec R., Jobic S. Chem. Mater., 2004, 16:662 20 [21]. Yu J.G., Yang B.C., Shin J.W., Lee S., Oh S., Choi J.H., Jeong J., Noh W., An J. Ceram. Int., 2019, 45:3811 21 [22]. Amar I.A., Petit C.T. G., Zhang L., Lan R., Skabara P.J., Tao S.W. Solid. State. Ionics., 2011, 201:94 22 [23]. Amar I.A., Petit C.T.G., Mann G., Lan R., Skabara P.J., Tao S. Int. J. Hydrogen Energy., 2014, 39:4322 23 [24]. Li H., Wang G., Zhang F., Cai Y., Wang Y., Djerdj I. RSC. Adv., 2012, 2:12413 24 [25]. Li R., Yabe S., Yamashita M., Momose S., Yoshida S., Yin S., Sato T. Solid. State. Ionics., 2002, 151:235 25 [26]. Truffault L., Ta M.T., Devers T., Konstantinov K., Harel V., Simmonard C., Andreazza C., Nevirkovets I.P., Pineau A., Veron O., Blondeau J.P. Mater. Res. Bull., 2010, 45:527 26 [27]. Slostowski C., Marre S., Bassata J.M., Aymonier C. J. Supercrit. Fluids., 2013, 84:89 [28]. Yue L., Zhang X.M. J. Alloys Compd., 2009, 475:702 27 [29]. Maria Magdalane C., Kaviyarasu K., Judith Vijaya J., Jayakumar C., Maaza M., Jeyaraj B. J. Photochem. Photobiol., B., 2017, 169:110 28 [30]. Banerjee S., Devi P.S., Topwal D., Mandal S., Menon K. Adv. Funct. Mater., 2007, 17:2847 29 [31]. Ma Y., Wang X., Khalifa H.A., Zhu B., Muhammed M. Int. J. Hydrogen Energy., 2012, 37:19401 30 [32]. Soleimani F., Salehi M., Gholizadeh A. Ceram. Int., 2018, 45:9826. 31 [33]. Fu Y.P., Chen S.H., Huang J.J. Int. J. Hydrogen Energy., 2010, 35:745 32 [34]. Matmin J., Jalani M.A., Osman H., Omar Q., Ab’lah N., Elong K., Kasim M.F. Nanomaterials., 2019, 9:264 33 [35]. He H.Y., Lu J. Sep. Purif. Technol., 2017, 172:374 34 [36]. Mandal R.K., Purkayastha M.D., Majumder T.P. Optik. 2019, 180:174 35 [37]. Athawale A.A., Bapat M.S., Desai P.A. J. Alloys Compd., 2009, 484:211 36 [38]. Prabaharan D.M.D.M., Sadaiyandi K., Mahendran M., Sagadevan S. Mat. Res., 2016, 19:478 37 [39]. Nezamzadeh-Ejhieh A., Shams-Ghahfarokhi Z. J. Chem., 2013, 2013:11 38 [40]. Saleh R., Djaja N.F. Superlattices Microstruct., 2014, 74:217 39 [41]. Sanna V., Pala N., Alzari V., Nuvoli D., Carcelli M. Mater. Lett.,2016, 162:257 40 [42]. Raja V.R., Karthika A., Kirubahar S.L., Suganthi A., Rajarajan M. Solid. State. Ionics., 2019, 332:55 41 [43]. Josephine G.A.S., Ramachandran S., Sivasamy A. J. Saudi Chem Soc., 2015, 19:549 42 [44]. Zhang C., Hen H., Wang N., Chen H., Kong D. Ceram. Int., 2013, 39:3685-3 43 [45]. Chen C.C., Lu C.S., Chung Y.C., Jan J.L. J. Hazard. Mater., 2007, 141:520 44 [46]. Saikia L., Bhuyan D., Saikia M., Malakar B., Dutta D.K., Sengupt P. Appl. Catal. A-Gen., 2015, 490:42 45
ORIGINAL_ARTICLE Antifungal activity of biosynthesized CuO nanoparticles using leaves extract of Moringa oleifera and their structural characterizations Copper oxide nanoparticles (CuONPs) were synthesized using Moringa oleifera leaf extract via a simple green chemistry approach. The prepared CuONPs were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), UV-visible diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. The CuONPs showed antifungal activity against Candida albicans, Aspergillus niger, Aspergillus clavatus, Trichophyton mentographytes, and Epidermophyton floccosum. The results revealed the successful synthesis of CuONPs by simple green chemistry approach may provide a useful tool in the field of nanotechnology. https://www.ajnanomat.com/article_93007_2918144b12b5987ac1a0c2ec9e6eb53d.pdf 2020-01-01T11:23:20 2020-07-11T11:23:20 15 23 10.26655/AJNANOMAT.2020.1.2 Nanotechnology CuO NPs Antifungal activity Moringa oleifera Photoluminescence Khanderao Pagar [email protected] true 1 Department of Chemistry, KKHA Arts, SMGL Commerce and SPHJ Science College, Chandwad, Savitribai Phule Pune University, Maharashtra 423 101, India Department of Chemistry, KKHA Arts, SMGL Commerce and SPHJ Science College, Chandwad, Savitribai Phule Pune University, Maharashtra 423 101, India Department of Chemistry, KKHA Arts, SMGL Commerce and SPHJ Science College, Chandwad, Savitribai Phule Pune University, Maharashtra 423 101, India AUTHOR Suresh Ghotekar [email protected] true 2 Department of Chemistry, Sanjivani Arts, Commerce and Science College, Kopargaon 423 603, Savitribai Phule Pune University, Maharashtra, India Department of Chemistry, Sanjivani Arts, Commerce and Science College, Kopargaon 423 603, Savitribai Phule Pune University, Maharashtra, India Department of Chemistry, Sanjivani Arts, Commerce and Science College, Kopargaon 423 603, Savitribai Phule Pune University, Maharashtra, India LEAD_AUTHOR Trupti Pagar [email protected] true 3 Department of Chemistry, G.M.D Arts, B.W Commerce and Science College, Sinnar, 422 103, Savitribai Phule Pune University, Maharashtra, India Department of Chemistry, G.M.D Arts, B.W Commerce and Science College, Sinnar, 422 103, Savitribai Phule Pune University, Maharashtra, India Department of Chemistry, G.M.D Arts, B.W Commerce and Science College, Sinnar, 422 103, Savitribai Phule Pune University, Maharashtra, India AUTHOR Amol Nikam [email protected] true 4 Department of Chemistry, GMV Science College, Tala 402 111, University of Mumbai, Maharashtra, India Department of Chemistry, GMV Science College, Tala 402 111, University of Mumbai, Maharashtra, India Department of Chemistry, GMV Science College, Tala 402 111, University of Mumbai, Maharashtra, India AUTHOR Shreyas Pansambal [email protected] true 5 Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India AUTHOR Rajeshwari Oza [email protected] true 6 Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India AUTHOR Dnyaneshwar Sanap [email protected] true 7 Department of Chemistry, Arts, Commerce and Science College, Dindori 422 202, Savitribai Phule Pune University, Maharashtra, India Department of Chemistry, Arts, Commerce and Science College, Dindori 422 202, Savitribai Phule Pune University, Maharashtra, India Department of Chemistry, Arts, Commerce and Science College, Dindori 422 202, Savitribai Phule Pune University, Maharashtra, India AUTHOR Harshal Dabhane [email protected] true 8 Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India AUTHOR [1]. Gawande M.B., Goswami A., Felpin F.X., Asefa T., Huang X., Silva R., Zou X., Zboril R., Varma R.S. Chemical reviews, 2016, 116:3722 1 [2]. Ghosh Chaudhuri R., Paria S. Chemical reviews, 2011, 112:2373 2 [3]. Daniel M.C., Astruc D. Chemical reviews, 2004, 104:293 3 [4]. Ghotekar S. Asian J. Green Chem., 2019, 3:187 4 [5]. Ahmed S., Ahmad M., Swami B.L., Ikram S. Journal of Advanced Research, 2016, 7:17 5 [6]. Frewer L.J., Gupta N., George S., Fischer A.R.H., Giles E.L., Coles D. Trends in Food Science & Technology, 2014, 40:211 6 [7]. Kamble D.R., Bangale S.V., Ghotekar S.K., Bamane S.R. J Nanostruct., 2018, 8:144 7 [8]. Syedmoradi L., Daneshpour M., Alvandipour M., Gomez F.A., Hajghassem H., Omidfar K. Biosensors and Bioelectronics, 2017, 87:373 8 [9]. Ghotekar S., Pansambal S., Pagar K., Pardeshi O., Oza R. Nanochem. Res., 2018, 3:189 9 [10]. Savale A., Ghotekar S., Pansambal S., Pardeshi O. J. Bacteriol. Mycol. Open Access, 2017, 5:00148 10 [11]. Ghotekar S., Savale A., Pansambal S. J. Water Environ. Nanotechnol., 2018, 3:95 11 [12]. Ghotekar S.K., Vaidya P.S., Pande S.N., Pawar S.P. Int. J. Multidis. Res and Deve., 2015, 2:419 12 [13]. Ghotekar S.K., Pande S.N., Pansambal S.S., Sanap D.S., Mahale K.M., Sonawane B. World Journal of Pharmacy and Pharmaceutical Sciences, 2015, 4:1304 13 [14]. Bangale S., Ghotekar S. Int. J. Nano Dimens., 2019, 10:217 14 [15]. Soleiman-Beigi M., Arzehgar Z. Synlett, 2018, 29:986 15 [16]. Sajjadifar S., Arzehgar Z., Khoshpoori S. J. Inorg. Organomet. Polym. Mater., 2018, 28:837 16 [17]. Arzehgar Z., Sajjadifar S., Arandiyan H. Asian J. Green Chem., 2019, 3:43 17 [18]. Soleiman-Beigi M., Arzehgar Z. J. Sulfur Chem., 2015, 36:395 18 [19]. Soleiman-Beigi M., Arzehgar Z. Monatsh Chem., 2016, 147:1759 19 [20]. Soleiman‑Beigi M., Arzehgar Z. Heteroatom Chem., 2016, 26:355 20 [21]. Sheikhshoaie I., Davary, S., Ramezanpour S. Chemical Methodologies, 2018, 2:47 21 [22]. Rahnama A., Gharagozlou M. Optical and Quantum Electronics, 2012, 44:313 22 [23]. Yu Y., Zhang, J. Materials Letters, 2009, 63:1840 23 [24]. Safarifard V., Morsali A., Ultrasonics Sonochemistry, 2012, 19:823 24 [25]. Zhu J., Bi H., Wang Y., Wang X., Yang X., Lu L. 2007. Materials Letters, 2007, 61:5236 25 [26]. Battez A.H., González R., Viesca J.L., Fernández J.E., Fernández J.D., Machado A., Chou R. and Riba J., Wear, 2008, 265:422 26 [27]. Nasrollahzadeh M., Sajadi S.M., Maham M. RSC Advances, 2015, 5:40628 27 [28]. Yu T., Cheong F.C., Sow C.H. Nanotechnology, 2004, 15:1732 28 [29]. Pansambal S., Deshmukh K., Savale A., Ghotekar S., Pardeshi O., Jain G., Aher Y., Pore D. J Nanostruct., 2017, 7:165 29 [30]. Borgohain J.B., Singh M.V., Ramarao, T., Shripathi S., Mahamuni. Phys. Rev., 2000, 61:11093 30 [31]. Cao M., Wang Y., Guo C., Qi Y., Hu C., Wang E. Journal of nanoscience and nanotechnology, 2004, 4:824 31 [32]. Keßler M.T., Robke S., Sahler S., Prechtl M.H. Catalysis Science & Technology, 2014, 4:102 32 [33]. Wang H., Xu J.Z., Zhu J.J., Chen H.Y. Journal of crystal growth, 2002, 244:88 33 [34]. Jayaprakash J., Srinivasan N., Chandrasekaran P., Girija E.K. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 136:1803 34 [35]. Xu J.F., Ji W., Shen Z.X., Tang S.H., Ye X.R., Jia D.Z., Xin X.Q. Journal of Solid State Chemistry, 1999, 147:516 35 [36]. Umadevi M., Christy A.J. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 109:133 36 [37]. Salavati-Niasari M., Davar F. Materials Letters, 2009, 63:441 37 [38]. Shende R., Subramanian S., Hasan S., Apperson S., Thiruvengadathan R., Gangopadhyay K., Gangopadhyay S., Redner P., Kapoor D., Nicolich S., Balas W. Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials, 2008, 33:122 38 [39]. Vijaya Kumar R., Elgamiel R., Diamant Y., Gedanken A., Norwig J. Langmuir, 2001, 17:1406 39 [40]. Varshney R., Bhadauria S., Gaur M.S. Nano Biomedicine & Engineering, 2012, 4 40 [41]. Lingaraju K., Naika H.R., Manjunath K., Nagaraju G., Suresh D., Nagabhushana H. Acta Metallurgica Sinica (English Letters), 2015, 28:1134 41 [42]. Aher Y.B., Jain G.H., Patil G.E., Savale A.R., Ghotekar S.K., Pore D.M., Pansambal S.S., Deshmukh K.K. Int. J. Mole. And Clin. Micro., 2017, 7:776 42 [43]. Sharma J.K., Akhtar M.S., Ameen S., Srivastava P., Singh G. Journal of Alloys and Compounds, 2015, 632:321 43 [44]. Pansambal S., Gavande S., Ghotekar S., Oza R., Deshmukh K. Int. J. Sci. Rre. Sci. Tech., 2017, 3:1388 44 [45]. Pansambal S., Ghotekar S., Oza R., Deshmukh K. Int. J. Sci. Rre. Sci. Tech., 2019, 5:122 45 [46]. Gunalan S., Sivaraj R., Venckatesh R. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 97:1140 46 [47]. Naika H.R., Lingaraju K., Manjunath K., Kumar D., Nagaraju G., Suresh D., Nagabhushana H. Journal of Taibah University for Science, 2015, 9:7 47 [48]. Sankar R., Maheswari R., Karthik S., Shivashangari K.S., Ravikumar V. Materials Science and Engineering: C, 2014, 44:234 48 [49]. Jayakumarai G., Gokulpriya C., Sudhapriya R., Sharmila G., Muthukumaran C. Applied Nanoscience, 2015, 5:1017 49 [50]. Brilhante R.S.N., Sales J.A., Pereira V.S., Castelo D.D.S.C.M., de Aguiar Cordeiro R., de Souza Sampaio C.M., Paiva M.D.A.N., dos Santos J.B.F., Sidrim J.J.C., Rocha M.F.G. Asian Pacific journal of tropical medicine, 2017, 10:621 50 [51]. Wiegand I, Hilpert K, Hancock REW. Nature Protocols, 2008, 3:163 51 [52]. Ijaz F., Shahid S., Khan S.A., Ahmad W., Zaman S. Tropical Journal of Pharmaceutical Research, 2017, 16:743 52
ORIGINAL_ARTICLE Magnetic nanoparticles - a promising tool for targeted drug delivery system Over the last decade, nanotechnology has brought great development in the biomedical field. This study reviewed some physical and chemical characteristic of magnetic nanoparticles that are crucial for medical applications. Advances in preparation of magnetic nanoparticles have some superior applications in hyperthermia, magnetic drug delivery, gene delivery, and magnetic resonance imaging. It was found that, the bio-distribution, pharmacokinetic, and biocompatibility magnetic nanoparticles can be affected by their physicochemical properties, size, shape, and surface chemistry. https://www.ajnanomat.com/article_93067_dcd1554c5adc93001cc441999961900b.pdf 2020-01-01T11:23:20 2020-07-11T11:23:20 24 37 10.26655/AJNANOMAT.2020.1.3 Magnetic nanoparticles Biomedical Hyperthermia Gene delivery Prakruti Amin [email protected] true 1 Prakruti Amin, Sal Institute of Pharmacy, Pharmaceutics Dept. Nr. Science City, Ahmedabad, Gujarat-India Prakruti Amin, Sal Institute of Pharmacy, Pharmaceutics Dept. Nr. Science City, Ahmedabad, Gujarat-India Prakruti Amin, Sal Institute of Pharmacy, Pharmaceutics Dept. Nr. Science City, Ahmedabad, Gujarat-India LEAD_AUTHOR Manish Patel true 2 Manish Patel L.M.College of Pharmacy, Pharmaceutics Dept. Navrangpura, Ahmedabad-Gujarat-India Manish Patel L.M.College of Pharmacy, Pharmaceutics Dept. Navrangpura, Ahmedabad-Gujarat-India Manish Patel L.M.College of Pharmacy, Pharmaceutics Dept. Navrangpura, Ahmedabad-Gujarat-India AUTHOR [1]. Goesmann H., Feldmann C. Chem. Int. Ed., 2010, 49:1362 1 [2]. Abolfazl A., Mohamad S., Soodabeh D. Nanoscale Research Letters, 2012, 7:144 2 [3]. Vashist S.K. J. Nanomed Nanotechol, 2013, 4:1000e130 3 [4]. Yadollahpour A. Orient. J. Chem., 2015, 31: 25 4 [5]. Jordan A., Scholz R., Wust P., Fähling H., Felix R. Journal of Magnetism and Magnetic Materials, 1999, 201:413 5 [6]. Kolhatkar A.G., Jamison A.C., Litvinov D., Willson R.C., Lee. T.R. International Journal of Molecular Sciences, 2013, 14:15977 6 [7]. Sun C., Lee J.S., Zhang M. Adv Drug Deliv Rev, 2008, 60:1252 7 [8]. Veiseh O., Gunn J.W., Zhang M. Adv Drug Deliv Rev., 2010, 62:284 8 [9]. Chomoucka J., Drbohlavova J., Huska D., Adam V., Kizek R., et al. Pharmacol Res, 2010, 62:144 9 [10]. Ali Y., Morcos S.K., Anderson P.B. Material Science ResearchIndia, 2014, 11:102 10 [11]. Morcos S.K. Br J Radiol, 2007, 80:73 11 [12]. Ersoy H., Rybicki F.J. J Magn Reson Imaging, 2007, 26:1190 12 [13]. Muldoon L.L., Sandor M., Pinkston K.E., Neuwelt E.A. Neurosurgery, 2005, 57:785 13 [14]. Stuart C.M., Yiu H., Dobson J. International journal of Nanomedicine, 2008, 3:169 14 [15]. Mody V., Cox A., Shah S., et al. Appl Nanosci, 2014, 4:385 15 [16]. Murray C.B., Norris D.J., Bawendi M.G. J. Am. Chem. Soc., 1993, 115:8706 16 [17]. Peng X.G., Manna L., Yang W.D., Wickham J., Scher E., et al. Nature, 2000, 404: 59 17 [18]. Cui R., Han Z., and Zhu J.J. A European Journal. 2011, 17:9377 18 [19]. Wang, X., Wang Z., Guo W., Kuang X., Hou, Hong zhuo Liu Sh. Chem. Commun., 2012, 48: 4812 19 [20]. Khan K., Rehman S., Rahman H.U., Khan Q. Nanomagnetism, 2015, 136 20 [21]. Thorek D.L., Chen A.K., Czupryna J., Tsourkas A. Annals of biomedical engineering, 2006, 34:23 21 [22]. Gupta A.K., M. Gupta, Biomaterials, 2005, 26:3995 22 [23]. Shaw S.Y., Chen Y.J., Ou J.J., Ho L. Enzyme Microb. Technol., 2006, 39:1089 23 [24]. Indira T.K., Lakshmi P.K. International Journal of Pharmaceutical Sciences and Nanotechnology, 2010, 3:1035 24 [25]. Rudin M., Weissleder, Nat Rev Drug Discov, 2003, 2:123 25 [26]. Gu H.W., Zheng R.K., Zhang X.X., Xu B. J. Am Chem Soc., 2004, 126:5664 26 [27]. Sun S.H., Zeng H., Robinson D.B., Raoux S., Rice P.M., Sun S., Zeng H., Robinson D.B., Raoux S., Rice P.M., Wang S.X., Li G. J. Am. Chem. Soc., 2004, 126:273 27 [28]. Akbarzadeh A., Samiei M., Davaran S. Nanoscale Research Letters, 2012, 7:144 28 [29]. Biehl P., Lühe M. , Dutz S., Felix H. Polymers, 2018, 10:91 29 [30]. Zeng Q., Baker I., Loudis, J.A., Liao Y., Hoopes P.J., Weaver J.B. Appl. Phys. Lett., 2007, 90:233112 30 [31]. Kayal S., Ramanujan R.V. Sci. Eng., 2010, 30:484 31 [32]. Hu F.X., Neoh K.G., Kang E.T. Biomaterials, 2006, 27:5725 32 [33]. Parvin S., Matsui J., Sato E., Miyashita T. J. Sci., 2009, 313:128 33 [34]. Shubayev V.I., Pisanic T.R., Jin S.H. Adv Drug Deliv Rev., 2009, 61:467 34 [35]. Gruttner C., Rudershausen S., Teller .J Magn Mater, 2001, 225:1 35 [36]. Nitin N., LaConte L.E.W., Zurkiya O. J Biol Inorg Chem., 2004 9:706 36 [37]. Chen YH, Liu YY, Lin RH, Yen FS. J Appl Polym Sci., 2008,108:583 37 [38]. Jiri K., Yazan H., Lukas R. et al., Nanomaterials, 2017, 7:243. 38 [39]. Bhatia S. Natural Polymer Drug Delivery Systems, 2016, 33:93 39 [40]. Sun C., Lee J.S., Zhang M. Advanced drug delivery reviews, 2008, 60: 1252 40 [41]. Devitt M.R., Chattopadhyay D., Kappel B.J., Jaggi J.S., Schiffman S.R., Antczak C. J. Nucl. Med., 2007, 48:1180 41 [42]. Jun L., Chunyan H., Quanguo H. (2015) Science of Advanced Materials, 2015, 7:672 42 [43]. Singh N., Jenkins G. J. S., Asadi R., Doak S. H. NanoReviews, 2010, 1:53 43
ORIGINAL_ARTICLE Bio-synthesis of iron oxide nanoparticles using neem leaf cake extract and its influence in the agronomical traits of vigna mungo plant In this work reports the synthesis of iron oxide along with the complex formation from the neem cake using the biosynthesis and precipitation method. Ferrous sulphate (FeSO4) and sodium hydroxide were used as the precursor precipitating agent, respectively. The resultant specimens were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), ultra-violet visible spectroscopy (UV-Vis), fourier-transform infrared spectroscopy (FT-IR), soil test, biochemical, and phytochemical analysis. To test the effect of the synthesized specimen as the nanofertilizer in the seed germination and the growth, the sample was incorporated in to the red soil and the agronomical traits including plant height. Number of leaves were studied over a survival period of 75 days of the selected plant species vigna mungo using POT analysis. The plant samples were harvested, and then the biochemical and phytochemical studies were carried out for alkaloids, glycosides, flavonoids, phenols, steroids, protein and total chlorophyll content. The results showed that the nanoparticles incorporation enhanced the plant growth and increased the concentration of the bioactive compounds in an appreciable level. https://www.ajnanomat.com/article_95586_e6fdc17c8f65ed84c6a2846e00c49e1d.pdf 2020-01-01T11:23:20 2020-07-11T11:23:20 38 46 10.26655/AJNANOMAT.2020.1.4 Biosynthesis Neem cake Biochemical Phytochemical Morphological studies Ramesh Radhakrishnan [email protected] true 1 Department of Physics, Sacred Heart College (Autonomous), Tirupattur, Tamil Nadu, India Department of Physics, Sacred Heart College (Autonomous), Tirupattur, Tamil Nadu, India Department of Physics, Sacred Heart College (Autonomous), Tirupattur, Tamil Nadu, India LEAD_AUTHOR Dhanaraj Lakshmi true 2 Department of Physics, Sacred Heart College (Autonomous), Tirupattur, Tamil Nadu, India Department of Physics, Sacred Heart College (Autonomous), Tirupattur, Tamil Nadu, India Department of Physics, Sacred Heart College (Autonomous), Tirupattur, Tamil Nadu, India AUTHOR Faize Liakath Ali Khan true 3 Department of Physics, Islamiah College (Autonomous), Vaniyambadi, Vellore Department of Physics, Islamiah College (Autonomous), Vaniyambadi, Vellore Department of Physics, Islamiah College (Autonomous), Vaniyambadi, Vellore AUTHOR Gopal Ramalingam true 4 Quantum Materials Research Lab (QMRL), Department of Nanoscience and Technology, Alagappa University, Karaikudi - 630003, Tamil Nadu, India Quantum Materials Research Lab (QMRL), Department of Nanoscience and Technology, Alagappa University, Karaikudi - 630003, Tamil Nadu, India Quantum Materials Research Lab (QMRL), Department of Nanoscience and Technology, Alagappa University, Karaikudi - 630003, Tamil Nadu, India AUTHOR Kasinathan Kaviyarasu [email protected] true 5 Nanoscience’s/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria, South Africa|Nanoscience ’s African Network (NANOAFNET), Materials Research Group (MRG), iThemba LABS - National Research Foundation (NRF), Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province, Cape Town, South Africa Nanoscience’s/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria, South Africa|Nanoscience ’s African Network (NANOAFNET), Materials Research Group (MRG), iThemba LABS - National Research Foundation (NRF), Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province, Cape Town, South Africa Nanoscience’s/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria, South Africa|Nanoscience ’s African Network (NANOAFNET), Materials Research Group (MRG), iThemba LABS - National Research Foundation (NRF), Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province, Cape Town, South Africa AUTHOR [1]. Ritchie J.T., Johnson A., Stewart B.A., Nielsen D.R. American Society of Agronomy, 1990, 53:369 1 [2]. Sharifi R.S., Khavazi K. Journal of Food, Agriculture and Environment, 2011, 9:496 2 [3]. Finch Savage W.E., Dent K.C., Clark L.J. Field Crops Research, 2004, 90:361 3 [4]. Zhou Y., Lin W., Huang J. Nanoscale Research Letters, 2010, 5:1351 4 [5]. Shanmugam S., Radhika T., Jothiramalingam R., Mutharasu D. International Journal of Nanoparticles, 2013, 6:350 5 [6]. Corradini E., Moura M.R., Mattoso L.H.C. EXPRESS Polymer Letters, 2010, 4:509 6 [7]. Nosheen Elahi N., Saima Mustafa P., Javed Mirza I. Journal of Research (Science), 2010,15:139 7 [8]. Atiyeh R.M., Edwards C.A., Metzger J.D., Lee S., Arancon N.Q. Biores. Technol., 2002, 84:7 8 [9]. Ting W., Xiaoying J., Zuliang C., Mallavarapu M., Ravendra N. Science of the Total Environment, 2014, 466:210 9 [10]. Kuhn L.T., Bojesen A., Timmermann L., Nielsen M.M., Morup S. Journal of Condensed matter Physics, 2002, 14:13551 10 [11]. Machado S., Pinto S.L, Grosso J.P., Nouws H.P.A., Albergaria J.T., Delerue Matos C. Science of Total Environment, 2013, 8:445 11 [12]. Pratyoosh S., Jaya B., Smriti S. International Journal of Microbiology Research, 2011, 3:71 12 [13]. Nakashima T., Fukuda H., Kyotani S., Morikawa H., Journal of Fermentation 13 Technology., 1988, 66:441 14 [14]. Ramachandran S., Singh S.K., Larroche C., Soccol C.R., Pandey A., Bioresource Technology., 2007, 98:214 15 [15]. Pandey A., Soccol C.R., Mitchell D. Bioprocesses and products: Process Biochem., 200, 35:153 16 [16]. Ozçimen D., Karaosmanoglu F. Renewable Energy, 2004, 29:779 17 [17]. Di L., Capra M., Ribeiro F., Vargas N.P., Freire G.L., De Oliveira D.M. Appl. Biochem. Biotechnol-Part A Enzyme Eng. Biotechnology, 2004, 113:173 18 [18]. Ma X.M., Geiser Lee J., Deng Y., Kolmakov A. Science of Total Environment, 2010, 408: 3053 19 [19]. Vanathi P., Rajiv N., Rajeshwari S., Pattanathu K.S., Venckatesh R. Mater. Letter., 2014, 134:13 20 [20]. Manivasagaperumal R., Vijayarengan P., Balamurugan S., Thiyagarajan G. International Journal of Recent Scientific Research, 2012, 3:687 21 [21]. Liu X.M., Zhang F.D., Zhang S.Q., He X.S., Fang R., Feng Z. Plant Nutrition and Fertilizer Science, 2005, 11:14 22 [22]. Shenu H.E., Kwari J.D., Sandbe M.K. International Journal of Agriculture & Biology, 2015, 25:125 23 [23]. Nasrollahzadeh A., Open Journal of Ecology, 2017, 7:101 24 [24]. Subba Reddy Y., Maria Magdalane C., Kaviyarasu K., Genene Tessema M., Kennedy J., Maaza M. Journal of Physics and Chemistry of Solids, 2018, 123:43 25 [25]. Kaviyarasu K., Devarajan P.A., Xavier S.J., Thomas S.A., Selvakumar S. Journal of Materials Science & Technology, 2012, 28:15 26 [26]. Judith Vijaya J., Jayaprakash N., Kombaiah K., Kaviyarasu K., John Kennedy L., Jothi Ramalingam R., Hamad A., Mansoor-Ali V.M., Maaza M. Journal of Photochemistry and Photobiology B: Biology. 2017, 177:62 27 [27]. Angel Ezhilarasi A., Judith Vijaya J., Kaviyarasu K., John Kennedy L., Jothi Ramalingam R., Hamad A. Journal of Photochemistry and Photobiology B: Biology, 2018, 180:39 28 [28]. Iyyappa Rajan P., Judith Vijaya J., Jesudoss S.K., Kaviyarasu K., John Kennedy L., Jothiramalingam R., Hamad A., Mansoor A. Materials Research Express, 2017, 4:085030 29 [29]. Jesudoss S.K., Judith Vijaya J., Iyyappa Rajan P., Kaviyarasu K., Sivachidambaram M., John Kennedy L., Hamad A., Jothiramalingam R., Murugan A. Photochemical & Photobiological Sciences, 2017, 16:766 30 [30]. Saritha V., Paul A., Mariadhas V., Naif Abdullah A., Abdul K., Ghilan M., Kaviyarasu K., Balasubramani R., Soon W., Arokiyaraj S. Journal of Photochemistry and Photobiology B: Biology, 2019, 191:65 31 [31]. Kanimozhi K., KhaleelBasha S., SuganthaKumari V., Kaviyarasu K. Journal of nanoscience and Nanotechnology, 2019, 19:2493 32 [32]. Raja A., Selvakumar K., Rajasekaran P., Arunpandian M., Ashokkumar S., Kaviyarasu K., Asath Bahadur S., Swaminathan M. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 564:23 33
ORIGINAL_ARTICLE Influence of atomizing voltage on fluorine doped tin oxide via spray pyrolysis technique Synthesis and characterization fluorine-doped tin oxide thin film using spray pyrolysis were coated on a glass substrate by varying the atomizing voltage. The XRD analysis was carried out and the results showed that the deposited films are polycrystalline in nature having the characteristic peaks of tetragonal structure of SnO2. The observed peaks are (110), (101), (200), (211) and the preferential growth was found to be (110) direction. The I/V plots of the material deposited with 3.8 kV, 4.0 kV and 4.2 kV, which represent sample FT1-FT3 showed a non-linear plot and observed to be a non Ohmic semiconducting material. It was also noticed that as the atomizing voltage of the depositing material increases the thickness of the films increases. The resistivity of the material deposited increases and decreases at 4.0 kV as the atomizing voltage and thickness of the films increases. The electrical conductivity of the material deposited increases with respect to the atomizing voltage and thickness, respectively. It was observed that as the optical absorbance and reflectance decreased the wavelength of the incident radiation and transmittance enhanced as the wavelength of the incident radiation increased and the band gap energy of the films were observed to be at the range of 2.70-3.10 eV. https://www.ajnanomat.com/article_95889_ab742ed4236926fa6a22d7a06555166a.pdf 2020-01-01T11:23:20 2020-07-11T11:23:20 47 57 10.26655/AJNANOMAT.2020.1.5 spray pyrolysis Fluorine Tin Oxide XRD Optical properties Ebube G. Agbim true 1 Department of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, Awka Department of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, Awka Department of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, Awka AUTHOR Imosobomeh L. Ikhioya [email protected] true 2 Department of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, Awka|Crystal Growth and Material Science Laboratory/Department of Physics and Astronomy, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria Department of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, Awka|Crystal Growth and Material Science Laboratory/Department of Physics and Astronomy, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria Department of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, Awka|Crystal Growth and Material Science Laboratory/Department of Physics and Astronomy, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria LEAD_AUTHOR Azibuike J. Ekpunobi true 3 Department of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, Awka Department of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, Awka Department of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, Awka AUTHOR [1]. Shanthi S., Subramanian C., Ramasamy P. Journal of Crystal Growth, 1999, 197:858 1 [2]. Abdullahi S., Moreh A.U., Hamza B., Wara M.A., Kamaluddeen H., Kebbe M.A., Monsuorat U.F. International Journal of Recent Research in Physics and Chemical Sciences, 2015, 1:1 2 [3]. Chamberlin R.R., Skarman J.S. Journal of the Electrochemical Society, 1966, 113:86 3 [4]. Filipovic L., Siegfried S., Giorgio C.M., Elise B., Stephan S., Anton K., Jordi T., Jochen K., Jorg S., Franz S. Microelectronics Engineering, 2013, 117:57 4 [5]. Hongli Z. International Journal of Applied Glass Science, 2013, 4:242 5 [6]. Jariwala C., Dhivya M., Rane1 R., Chauhan N., Rayjada P.A., Raole P.M., John P.I. Journal of Nano and Electronics Physics,2013, 5:1 6 [7]. Jaworek A., Sobczyk A.T., Krupa A., Lackowski M., Czech T. Journal of Technical Sciences, 2009, 57:63 7 [8]. Babar A.R., Shinde S., Moholkar A.V., Bhosale C.H., Kim J.H., Rajpure K.Y. Journal of Semiconductors, 2011, 32:1 8 [9]. Patrick M.M., Musembi R., Munji M., Odari B., Munguti L., Ntilakigwa A.A., Nguu J., Aduda B., Muthoka B. Advances in materials, 2015, 4:51 9 [10]. Mwathe P.M., Musembi R., Munji M., Odari B., Munguti L., Ntilakigwa A.A., Nguu J., Aduda B., Muthoka B. Advances In Materials, 2014a, 3:38 10 [11]. Odari B.M., Musembi R.J., Mageto M.J., Othieno H., Gaitho F., Mghendi M., Muramba V. American Journal of Materials Science., 2013, 3:91 11 [12]. Subramanian N.S., Santhi B., Sundareswaran S., Venkatakrishnan K.S. Metal-Organic and Nano-Metal Chemistry., 2006, 36:131 12 [13]. Ravichandran k., Muruganantham G., Sakthivel B., Philominathan P. Journal of Ovonic Research, 2009, 5:63 13 [14]. Dainius P., Ludwig J.G. Journal of Electroceramics, 2005, 14:103 14 [15]. Balkenende A.R., Bogaerts A., Scholtz J.J., Tijburg R.M., Willems H. Philips Journal of Research, 1996, 50:365 15 [16]. Jaworek A., Sobczyk A.T., Krupa A., Lackowski M., Czech T. Journal of Technical Sciences, 2009, 57:63 16 [17]. Kandasamy P., Lourdasamy A. International Journal of Physics, 2014, 9:261 17 [18]. Yadav A.A., Masumdar E.U., Moholkar A.V., Neumann-Spallart M., Rajpure K.Y., Bhosale C.H. J. Alloys Compd., 2009, 488:350 18 [19]. Noh S.I., Ahn H.J., Riu D.H. Ceramics Int., 2012, 38:3735 19 [20]. Chantarat N., Yu-Wei C., Shu-Han H., Chin-Ching L., Mei-Ching C., San-Yuan C. ECS Journal of Solid State Science and Technology, 2013, 2:131 20 [21]. Arle R.N., Khatik B.L. International Journal of Chemical and Physical Sciences, 2014, 3:83 21 [22]. Agbim E.G., Ikhioya I.L., Agbakwuru C.B., Oparaku O., Ugbaja C.M. International Journal of Scientific & Engineering Research, 2019, 10:707 22 [23]. Sharma A., Prakah D., Verma K.D. Optoelectronics and Advanced Materials-Rapid Communications, 2007, 1:683 23 [24]. Jeyasubramanian K.T., Gokul S.R. Achievers of Material Science and Engineering, 2016, 78:66 24 [25]. Kar S., Kundoo S. International Journal of Science and Research, 2015, 4:530 25 [26]. Karthick P., Divya V., Suja S., Sridharan M., Jeyadheepan K., Asian Journal of Applied Sciences, 2015, 8:259 26 [27]. Kandasamy P., Lourdasamy A. International Journal of Physics, 2014, 9:261 27 [28]. Napi M.L., Maarof M.F., SoonC.F., Nayan N., Fazli I.M., Hamed K.A, Mokhtar S.M., Seng N.K., Ahmad M.K., Suriani A.B., Mohamed A. Journal of Engineering and Applied Science, 2016, 11:8800 28 [29]. Saipriya M., Sultan R., Singh I. Physica B: 2011, 406:812 29 [30]. Yadav A.A., MasumdarE.U., Moholkar A.V., Neumann-Spallart M., Rajpure K.Y., Bhosale C.H. J. Alloys Compd, 2009, 488:350 30 [31]. Ziad Y. B, Kelly P. J., Glen W., Boardman J. Coatings, 2014, 4:732 31 [32]. Agbim E. G., Ikhioya I.L., Ekpunobi A.J. IOSR Journal of Applied Physics, 2019, 11:70 32 [33]. Kim K.S., Yoon S.Y., Lee W.J., Kim K.H. Surface and Coatings Technology, 2001, 138:229 33
ORIGINAL_ARTICLE Biosynthesis of silver nanoparticles using leaf and bark extract of indian plant carissa carandas, characterization and antimicrobial activity Biosynthesized silver nanoparticle is a very expanding and useful area. The reductant material in the plant extracts (leaves and bark) of Carissa carandas can produce silver nanoparticles. The plant leaves and bark extract of Carissa caranadas act as reducing and capping agent. Conventionally, chemical reduction is the most frequently applied approach for preparation of metallic nanoparticles; however, it might be hazardous to environment. In the present work we report eco-friendly, cost effective, and green approach for the synthesis of AgNPs by using 0.02 M AgNO3 solution and plant extracts (leaves and bark) of Carissa caranadas as reducing and capping agent. The synthesized nanoparticles were characterized using UV-VIS spectrophotomer, XRD, FT-IR, FE-SEM, and ICP-AES analysis. The biosynthesized silver nanoparticles showed a comparable antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Aspergillus niger. Antimicrobial activity of the biosynthesized silver nanoparticles suggests their possible application in medical and pharmaceuticals industry. https://www.ajnanomat.com/article_96487_14cacc20f1655d9704fb85f9a12300ed.pdf 2020-01-01T11:23:20 2020-07-11T11:23:20 58 66 10.26655/AJNANOMAT.2020.1.6 Green synthesis Silver nanoparticles UV-Visible Spectrophotometer FT-IR ICP-AES Antimicrobial activity Satish B. Manjare [email protected] true 1 Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India LEAD_AUTHOR Sandip G. Sharma [email protected] true 2 Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India AUTHOR Vijay L. Gurav [email protected] true 3 Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India AUTHOR Mamata R. Kunde [email protected] true 4 Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India AUTHOR Sneha S. Patil [email protected] true 5 Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India Department of Chemistry, Ratnagiri Sub-Centre, University of Mumbai, P-61, MIDC-Mirjole, Ratnagiri 415639. M.S. India AUTHOR Shankar R. Thopate [email protected] true 6 Department of Chemistry, Shree Sadguru Gangageer Maharaj Science Gautam Arts & Sanjivani Commerce College, Kopargaon, Dist-Ahmednagar 423601, M.S. India Department of Chemistry, Shree Sadguru Gangageer Maharaj Science Gautam Arts & Sanjivani Commerce College, Kopargaon, Dist-Ahmednagar 423601, M.S. India Department of Chemistry, Shree Sadguru Gangageer Maharaj Science Gautam Arts & Sanjivani Commerce College, Kopargaon, Dist-Ahmednagar 423601, M.S. India LEAD_AUTHOR [1]. Li X., Zhu T., Shao Z., Li Y., Chang H., Gao W., et al. Tetrahedron. 2016, 72:69 1 [2]. Gurunathan S. Arab J Chem., 2019, 12:168 2 [3]. Banerjee P., Satapathy M., Mukhopahayay A., Das P. Bioresour Bioprocess. 2014, 1:1 3 [4]. Nemamcha A., Moumeni H., Rehspringer J.L. Phys. Procedia., 2009, 2:713 4 [5]. Sharma M., Sarma P.J., Goswami M.J., Bania K.K. J Colloid Interface Sci., 2017, 490:529 5 [6]. De Castro K.A., Rhee H. J Incl Phenom Macrocycl Chem. 2015, 82:13 6 [7]. Kora A.J., Rastogi L. Arab J Chem. 2018, 11:1097 7 [8]. Santoshi kumari A., Venkatesham M., Ayodhya D., Veerabhadram G. Appl Nanosci. 2015, 5:315 8 [9]. Singhal G., Bhavesh R., Kasariya K., Sharma A.R., Singh R.P. J Nanoparticle Res., 2011, 13:2981 9 [10]. Gavhane A., Padmanabhan P., Kamble S., Jangle S. Int J Pharma Bio Sci., 2012, 3:88 10 [11]. Kalpana D., Han J.H., Park W.S., Lee S.M., Wahab R., Lee Y.S. Arab J Chem . 2014, 12:1722 11 [12]. Krishnaraj C., Muthukumaran P., Ramachandran R., Balakumaran M.D., Kalaichelvan P.T. Biotechnol Reports., 2014, 4:42 12 [13]. Deshmukh S.R., Ashrit D.S., Patil B.A. Int J Pharm Pharm Sci., 2012, 4:329 13 [14]. Siddiqi K.S., Husen A. Nanoscale Res. Lett., 2016, 11:482 14 [15]. Gurunathan S., Kim E.S., Han J.W., Park J.H., Kim J.H., Grumezescu A.M. Molecules. 2015, 20:22476 15 [16]. Mallikarjuna K., John Sushma N., Narasimha G., Manoj L., Deva Prasad Raju B. Arab J Chem., 2014, 7:1099 16 [17]. Satapathy M.K., Banerjee P., Das P. Appl Nanosci., 2015, 5:1 17 [18]. Padalia H., Moteriya P., Chanda S. Arab J Chem., 2015, 8:732 18
ORIGINAL_ARTICLE Computational approach of palladium (II) complex ions with binuclear diamine ligands thermo-physical, chemical, and biological properties: a dft study Incomputational chemistry through various basis sets, it is possible to design new molecules and discuss their use through their physical, chemical, biochemical studies. Chemical activity, biological activity, physical chemical activities can be diagnosed using density functional theory (DFT) for some palladium (II) complex ions. In this research study, the optimized dihydrazine palladium (II) complex ion (L01), di(1, 2- diaminemethane) palladium (II) complex ion (L02), di(1, 2- diamineethane) palladium (II) complex ion (L03), and di (1, 2- diamine propane) palladium (II) complex ion (L04) were simulated. Finally a comparative study of the palladium (II) complex ions were designed to show what ions are biologically more active using their QSAR data and orbital diagrams for HOMO and LUMO of the study of electronic properties. The HOMO-LUMO gap was also evaluated for chemical reactivity. The PIC50 value was calculated using the QSAR data where the value ​​of L01, L02, and L03 L04 where -15.757, 13.128, -6.111 and -5.955, respectively. If PIC50 is below -6, then the compound is said to be biologically active. It was found that, the L04 is highly biological active and L03 is almost similar to L04. Also, by enhancing the methyl group in palladium chain, the biological activity increased. https://www.ajnanomat.com/article_96587_1dc73366f5706319b23d5105850cd227.pdf 2020-01-01T11:23:20 2020-07-11T11:23:20 67 81 10.26655/AJNANOMAT.2020.1.7 Palladium (II) DFT QSAR HOMO LUMO Vibrational spectroscopy Electronic spectroscopy Mohammad Jahidul Islam [email protected] true 1 Department of Physics, European University of Bangladesh, Dhaka-1216, Bangladesh Department of Physics, European University of Bangladesh, Dhaka-1216, Bangladesh Department of Physics, European University of Bangladesh, Dhaka-1216, Bangladesh AUTHOR Sunanda Paul [email protected] true 2 Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong,Hathazari-4334, Bangladesh Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong,Hathazari-4334, Bangladesh Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong,Hathazari-4334, Bangladesh AUTHOR Ajoy Kumer [email protected] true 3 Department of Chemistry, European University of Bangladesh, Dhaka-1216, Bangladesh Department of Chemistry, European University of Bangladesh, Dhaka-1216, Bangladesh Department of Chemistry, European University of Bangladesh, Dhaka-1216, Bangladesh LEAD_AUTHOR Md Nuruzzaman Sarker [email protected] true 4 Department of Physics, European University of Bangladesh, Dhaka-1216, Bangladesh Department of Physics, European University of Bangladesh, Dhaka-1216, Bangladesh Department of Physics, European University of Bangladesh, Dhaka-1216, Bangladesh AUTHOR [1]. Chen X., Engle K.M., Wang D.H., Yu J.Q. Angewandte Chemie International Edition, 2009, 48:5094 1 [2]. Lazarević T.R., Bugarčić A., Živadin D. European journal of medicinal chemistry, 2017, 142:8 2 [3]. Ray S.M., Singh R., Jay K., Samantaray Manoja K., Shaikh Mobin M., Panda D., Ghosh P. Journal of the American Chemical Society, 2007, 129:15042 3 [4]. Ajoy Kumer M.N.S., Sunanda PAUL, International Journal of Chemistry and Technology, 2019, 3:26 4 [5]. Ajoy Kumer M.N.S., Paul S., Zannat A. Advanced Journal of Chemistry-Section A, 2019, 2:190 5 [6]. Islam M.J., Sarker Md.N., Kumer A., Paul S. International journal of Advanced Biological and Biomedical Research, 2019, 7:318 6 [7]. Islam M.J., Kumer A., Sarker Md. N., Paul S., Zannat A. Advanced Journal of Chemistry-Section A, 2019, 2:316 7 [8]. Ajoy K., Paul S., Sarker Md.N., Islam M.J. International Journal of New Chemistry, 2019, 6:236 8 [9]. Ajoy K., Sarker Md.N., Pual S. Eurasian Journal of Environmental Research, 2019, 3:1 9 [10]. Islam M.J., Sarker Md.N., Kumer A., Paul S., International journal of Advanced Biological and Biomedical Research, 2019, 7:306 10 [11]. Kumer A., Ahmed B., Sharif Md.A., Al-Mamun A. Asian Journal of Physical and Chemical Science, 2017, 4:1 11 [12]. Sarker Md.N., Ajoy K., Islam M.J., Sunanda P. Asian Journal of Nanoscience and Materials, 2019, 2:439 12 [13]. Miyaura N., Suzuki A. Chemical eviews, 1995, 95:2457 13 [14]. Miyaura N., Yanagi T., Suzuki A. Synthetic Communications, 1981, 11:513 14 [15]. Hossain M.I., Ajoy K. Asian Journal of Chemical Science, 2018, 3:1 15 [16]. Kumer A., Ahmed B., Sharif M.A., Al-Mamun A. Asian Journal of Physical and Chemical Science, 2017, 4:1 16 [17]. Garrett C.E., Prasad K. Advanced Synthesis & Catalysis, 2004, 346:889 17 [18]. Doucet H., Hierso J.C. Currentopinion in drug discovery & development, 2007, 10:672 [19]. Ajoy K., Sunanda P., Sarker N.Md., Islam J.M. International Journal of New Chemistry, 2019, 6:236 18 [20]. Howard A., McIver J., Collins J. Hyperchem computational chemistry. Hypercube Inc., Waterloo 1994 19 [21]. Koopmans Y.T. Physica, 1934, 1:104 20 [22]. Parr R.G., Szentpály L.V., Liu S. Journal of the American Chemical Society, 1999, 121:1922 21 [23]. Canadell S., Pouget J.P., Brossard L. Solid State Communications, 1990, 75:633 22 [24]. Zineb Almi S.B., Lanez T., Tchouar N. International Letters of Chemistry, Physics and Astronomy, 2014, 37:113 23
ORIGINAL_ARTICLE An innovative approach delivery of anticonvulsant via transcranial route using a smart bio-functional agent cum musa acuminata Epilepsy is a central nervous system disorder (neurological disorder) in which the nerve cell activity in the brain becomes disrupted, causing unprovoked, recurrent seizures or unusual behavior, sensations or even unconsciousness. In this research work, Pregablin selected as a molecule for designing a emulgel using novel bio-functional agent and compared with standard polymer. This can be overcome by minimizing the dose and side-effects of API molecule used for various routes. The Pregablin loaded emulgel was prepared using novel bio-functional agent isolated from fruit pulp of Musa acuminata and with standard polymer (sodium alginate) with different ratios. The prepared formulations were evaluated for pH stability studies, % entrapment efficacy, in-vitro drug release and stability studies. The prepared emulgel was subjected to the best formulation based on comparison of above mentioned evaluation parameters, FM2 formulation was found to be the best formulation showing an R2 value of 0.9487, T50% of 23.52 h and T80% of 60.22 h respectively. According to the release kinetics, the best fit model was Peppas Korsmeyer with Fickian Diffusion (Higuchi Matrix) as the mechanism of drug release. Musa acuminata provided the excellent stability for the formulation. The results revealed that, uaing Musa acuminata as bio-functional agent was safe and compatible with drug, so Pregablin loaded emulgel can be more affective for brain targeting upon trans-cranial administration. https://www.ajnanomat.com/article_96791_c49734013b2c46b91c9e5ab7435a3c4e.pdf 2020-01-01T11:23:20 2020-07-11T11:23:20 82 92 10.26655/AJNANOMAT.2020.1.8 Bio-functional agent Emulgel Epilepsy Musa acuminata Pregablin Satheesh Madhav [email protected] true 1 Faculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, India Faculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, India Faculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, India AUTHOR Abhinav Dewari [email protected] true 2 Faculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, India Faculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, India Faculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, India AUTHOR Yogita Tyagi [email protected] true 3 Faculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, India Faculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, India Faculty of Pharmacy, DIT University, Mussoorie diversion Road, Dehradun-248009, Uttarakhand, India LEAD_AUTHOR [1]. Guzel O. J of Bio Trace Ele Res., 2016, 178:1 1 [2]. Marra V. Epilepsy Research, 2015, 10:6 2 [3]. Khambhati A.N., Davis K.A, Oommen B.S, Chen S.H, Lucas T.H, Litt B. PLOS Computational Biology, 2015, 11:1 3 [4]. Danzer S. Neuron Journal, 2012, 75:739 4 [5]. Pathirana W., Kariyawasam S.H., Tibbotumunwa H., Perera K. Indian J Pharm Sci., 2006, 68:493 5 [6]. Pathirana W., Abhayawadhana P., Kariyawasam S.H., Ratnasooriya W.D. Indian J. Pharm Sci., 2009, 71:264 6 [7]. Kamila S., Madhav N.V.S., Sarkar C.N. IJPSR., 2015, 6:1000 7 [8]. Varshney S., Madhav N.V.S. J. Mol. Medi. and Clin App., 2017, 2:1 8 [9]. Kotecha R.K., Bhadra S., Rajesh K.S. Int J of Phar and Pharmaceut Sci., 2013, 4:490 9 [10]. Francis D., Mouftah S., Steffen R., Beduneau A., Pellequer Y., Lamprech A. Eur J Pharm Biopharm., 2015, 89:56 10 [11]. Madhav N.V.S., Yadav A.P. Acta Pharmaceutica Sinica B., 2013, 6:408 11 [12]. Dattatraya S.M., Loknete J.D. Int. J. Phar. and Pharmaceut Sci., 2018, 10:93 12