ORIGINAL_ARTICLE Highly effective synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones using pyridinium-N-sulfonic acid bisulfate as a dual-functional catalyst Acidic ionic liquid pyridinium-N-sulfonic acid bisulfate ([Py-SO3H][HSO4]) has effectively catalyzed the production of 3, 4-dihydropyrimidin-2 (1H)-ones via the condensation reaction of the arylaldehydes with β-ketoesters and urea under solvent-free conditions. Due to the dual-functionality of [Py-SO3H][HSO4] (bearing acidic and basic sites), it was highly effective and general catalyst for the reaction. Additionally, an attractive mechanism for the dual-functionality of the catalyst was proposed. https://www.ajnanomat.com/article_85817_44d2543f3181daec75fbb65c3ae744cc.pdf 2019-10-01T11:23:20 2020-07-16T11:23:20 367 375 10.26655/AJNANOMAT.2019.4.1 3 4-Dihydropyrimidin-2 (1H)-one Acidic ionic liquid Dual-functional catalyst Pyridinium-N-sulfonic acid bisulfate (Py-SO3H][HSO4]) Solvent-free Sima Dehghani [email protected] true 1 Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran AUTHOR Maria Merajoddin [email protected] true 2 Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran AUTHOR Abdolkarim Zare [email protected] true 3 Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran LEAD_AUTHOR [1]. Wua T.Y., Su S.G., Gung S.T., Lin M.W., Lin Y.C, Ou-Yang W.C., Sun I.W., Lai C.A. J. Iran Chem. Soc., 2011, 8:149 1 [2]. Sakaebe H., Matsumoto H. Electrochem Commun, 2003, 5: 594 2 [3]. Gou S.P., Sun I.W. Electrochim Acta, 2008, 53:2538 3 [4]. Ue M., Takeda M., Toriumi A., Kominato A., Hagiwara R., Ito Y.J. Electrochem Soc., 2003, 150: A499 4 [5]. Chang J.K., Lee M.T., Tsai W.T., Deng M.J., Sun I.W. Chem. Mater., 2009, 21:2688 5 [6]. Hasaninejad A., Zare A., Shekouhy M., Ameri Rad. J. J. Comb. Chem., 2010, 12: 844 6 [7]. Youseftabar-Miri L., Hosseinjani-Pirdehi H. Asian J. Green Chem., 2017, 1:56 7 [8]. Zolfigol M.A., Khazaei A., Moosavi-Zare A.R., Zare A., Kruger H.G., Asgari Z., Khakyzadeh V., Kazem-Rostami M. J. Org. Chem., 2012, 77:3640 8 [9]. Sajjadifar S., Mohammadi-Aghdam S. Asian J. Green. Chem., 2017, 1:1 9 [10]. Abshirini Z., Zare A. Z. Naturforsch, 2018,73b:191 10 [11]. Vekariya R.L. J. Mol. Liq., 2017, 227:44 11 [12]. Rezayati S., Hajinasiri R., Hossaini Z., Abbaspour S. Asian J. Green Chem., 2018, 2:268 12 [13]. Moosavi-Zare A.R., Zolfigol M.A., Zarei M., Zare A., Khakyzadeh V., Hasaninejad A. Appl Catal A: Gen, 2013, 467:61 13 [14]. Mohammadi S., Abbasi M. Res. Chem. Intermed, 2015, 41:8877 14 [15]. Moosavi‐Zare A.R., Zolfigol M.A., Khaledian O., Khakyzadeh V. Darestani Farahani M., Gerhardus Kruger H. New J. Chem., 2014, 38:2342 15 [16]. Rezayati S., Rezaee Nezhad E., Hajinasiri R. Chin Chem. Lett., 2016, 27:974 16 [17]. Youseftabar-Miri L., Hosseinjani-Pirdehi H. Asian J. Green Chem., 2017, 1:56 17 [18]. Rezayati S., Salehi E., Hajinasiri R., Afshari Sharif Abad S. C. R. Chim., 2017, 20:554 18 [19]. Das P.J., Das D. Asian J. Green Chem., 2018, 2:11 19 [20]. Rezayati S., Sheikholeslami-Farahani F., Hossaini Z., Hajinasiri R., Afshari Sharif Abad S. Comb. Chem., 2016, 19:720 20 [21]. Poyafar F., Fallah-Mehrjardi M., Banitaba SH. Asian J. Green Chem., 2018, 2:96 21 [22]. Moosavi‐Zare A.R., Zolfigol M.A., Khaledian O., Khakyzadeh V. Chinese Journal of Catalysis, 2014, 35:573 22 [23]. Rezayati S., Sheikholeslami-Farahani F., Rostami-Charati F., Afshari Sharif Abad S. Rese. Chem. Intermed., 2016, 42:4097 23 [24]. Himaja M., Poppy D., Asif K. Int. J. Res. Ayurveda Pharm, 2011, 2:1079 24 [25]. Arzehgar Z., Sajjadifar S., Fekri M.H. Asian J. Nanosci Mater, 2019, 2:251 25 [26]. Karami M., Zare A. Org. Chem. Res. 2018, 4:174 26 [27]. Heravi M.M., Karimi N., Pooremami S. Adv. J. Chem., 2019, A 2:73 27 [28]. Kazemi E., Davoodnia A., Nakhaei A., Basafa S., Tavakoli-Hoseini N. Adv. J. Chem. A., 2018, 1:96 28 [29]. Kappe C.O. Eur. J. Med. Chem., 2000, 35:1043 29 [30]. Aron Z.D., Overman L.E. Chem. Commun, 2004, 253 30 [31]. Haggarty S.J., Mayer T.U., Miyamoto D.T., Fathi R., King R.W., Mitchison T.J., Schreiber S.L. Chem. Biol., 2000, 7:275 31 [32]. Yarim M., Sarac S., Kilic F.S., Erol K. IL. Farmaco, 2003, 58:17 32 [33]. Rovnyak G.C., Kimball S.D., Beyer B., Cucinotta G., Dimarco J.D., Gougoutas J., Hedberg A., Malley M., McCarthy J.P. J. Med. Chem., 1995, 38:119 33 [34]. Bruce M.A., Pointdexter G.S., Johnson G. PCT. Int. Appl WO., 1998, 98:33791 34 [35]. Sidler D.R., Larsen R.D., Chartrain M., Ikemoto N., Roberge C.M., Taylor C.S,. Li W., Bills G.F. PCT Int Appl WO., 1991, 99:07695. 35 [36]. Naik N.S., Shastri L.A., Joshi S.D., Dixit S.R., Chougala B.M., Samundeeswari S., Holiyachi M., Shaikh F., Madar J., Kulkarni R., Sunagar V. Bioorg. Med. Chem., 2017, 25:1413 36 [37]. Lala J., Sharmaa M., Guptab S., Parashara P., Sahua P., Agarwala D.D. J Mol Catal A: Chem., 2012, 352:31 37 [38]. Kolvari E., Koukabi N., Armandpour O. Tetrahedron, 2014, 70:1383 38 [39]. Zhang Y., Wang B., Zhang X., Huang J., Liu C. Molecules, 2015, 20:3811 39 [40]. Saher L., Makhloufi-Chebli M., Dermeche L., Boutemeur-Khedis B., Rabia C., Silva A.M.S., Hamdi M. Tetrahedron Lett., 2016, 57:1492 40 [41]. Azuaje J., Tubío C.R., Escalante L., Gómez M., Guitián F., Coelho A., Caamaño O., Gil A., Sotelo E. Appl Catal A: Gen., 2017, 530:203 41 [42]. Davarpanah J., Sayahi M.H., Ghahremani M., Karkhoe S . J. Mol. Struct., 2019, 1181:546 42 [43]. Farhadi A., Noei J., Aliyari R.H., Albakhtiyari M., Takassi M.A. Res. Chem. Intermed, 2016, 42:1401 43 [44]. Wang J-H., Zhang E., Tangn G-M., Wangn Y-T., Cui Y-Z., Ng S.W. J. Solid State Chem., 2016, 241:86 44 [45]. Maleki A., Paydar R. React Funct Polym., 2016, 109:120 45 [46]. Barbero M., Cadamuro S., Dughera S. Green Chem., 2017, 19:1529 46 [47]. Mondal J., Sen T., Bhaumik A. Dalton Trans, 2012, 41:617 47
ORIGINAL_ARTICLE Synthesis, analysis and application of noble metal nanoparticles by Cucurbita pepo using different solvents The synthesis of metal nanoparticles through biological approach is an important aspect of biotechnology. The biological method provides a feasible alternative as compared to chemical and physical methods. The synthesis of metal nanoparticles using plant derived materials is an effective method for the production of metal nanoparticles.This work reports the rapid biosynthesis of silver nanoparticles from plant extract Cucurbita pepo. The plant extract was prepared using two different solvents i.e. double distilled water and 70% ethanol by hot percolation method. The sample was subjected to different reaction conditions i.e. pH (3, 7, 9) and temperature (0 °C, r.t., 37 °C, 60 °C, 100°C). The preliminary characterization of nanoparticles was done by using UV-VIS spectrophotometer at different wavelengths on the basis of color of the sample obtained from different solvents. Confirmatory analysis of the synthesized silver nanoparticles were done by energy dispersion X-ray spectrometer (EDS) and transmission electron microscopy (TEM). These biosynthesized silver nanoparticles were used in the evaluation of antimicrobial activity that was done by Minimum Inhibitory concentration method against different pathogenic strains. The detection, analysis of presence of metal ions in the synthesized silver nanoparticles by using UV-VIS spectrophotometer at 630 nm. https://www.ajnanomat.com/article_85827_7ec3a72a93c4d73d422c15db1371196f.pdf 2019-10-01T11:23:20 2020-07-16T11:23:20 376 398 10.26655/AJNANOMAT.2019.4.2 Transvermillion Silver nanoparticles Cucurbita pepo UV-VIS spectrophotometer Energy dispersion X-Ray Spectrometer (EDS) Transmission Electron Microscopy (TEM) Antimicrobial activity Prabhpreet Kaur [email protected] true 1 Department of Biotechnology, Guru Nanak Girls College, Model Town, Ludhiana, India Department of Biotechnology, Guru Nanak Girls College, Model Town, Ludhiana, India Department of Biotechnology, Guru Nanak Girls College, Model Town, Ludhiana, India AUTHOR Ratika Komal [email protected] true 2 Department of Biotechnology, Guru Nanak Girls College, Model Town, Ludhiana, India Department of Biotechnology, Guru Nanak Girls College, Model Town, Ludhiana, India Department of Biotechnology, Guru Nanak Girls College, Model Town, Ludhiana, India LEAD_AUTHOR [1]. Iravani S., Korbe Kaudi H., Zoltaghari B. Research of Pharma Science, 2014, 916:385 1 [2]. Dibyender S., Datta R., Hannigan R. Developments in Environmental Science, 2011, 5:150 2 [3]. Kalirawana T.C., Sharma P., Joshi S.C. International Journal of Pharma and Bio Sciences, 2015, 6:772 3 [4]. Ghorbani-Choghamarani A., Mohmmadi M. Tahernia Z. Journal of the Iranian Chemical Society, 2019, 16:411 4 [5]. Annadhasan M., Muthukumarasamyvel T., Sankar Babu V.R., Rajendiran N. ACS Sustainable Chem. Eng., 2014, 2:887 5 [6]. Arya V., Komal R., Kaur M., Goyal A.. Pharmacologyonline, 2011, 3:118 6
ORIGINAL_ARTICLE A DFT, NBO, RDG, MEP and thermodynamic sudy of acrolein interaction with pristine and Ga‒doped boron phosphide nanotube In this research, the interaction of the acrolein (Acr) molecule with the pristine and Ga‒doped boron phosphide nanotube (BPNTs) was investigated using the density functional theory (DFT). The electrical, quantum, thermodynamic properties, natural bond orbital (NBO), reduced density gradient (RDG), atom in molecule (AIM), and molecular electrostatic potential (MEP) for all studied models were calculated and analyzed. The results revealed that the thermodynamic parameters (∆H and ∆G) values for all studied models were negative and favorable in thermodynamic point of view. By doping the Ga atom and adsorbing Acr molecule, the HOMO, LUMO, gap energy, conductivity, and optical properties of the nanotube altered slightly from the original values. Whereas, the global hardness and chemical potential of the Ga-doped increased slightly from pristine state and the activity of system decreased slightly from the original state. In addition, the AIM parameters and RDG results showed that the covalent bonding interaction between Acr and BPNTs was so strong. https://www.ajnanomat.com/article_85846_acd85ff4bce9a719e66fcd1d0f320164.pdf 2019-10-01T11:23:20 2020-07-16T11:23:20 399 412 10.26655/AJNANOMAT.2019.4.3 Acrolein BPNTs Ga doped DFT MEP Mahdi Rezaei Sameti [email protected] true 1 Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, 65174, Iran Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, 65174, Iran Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, 65174, Iran LEAD_AUTHOR [1]. Seaman V.Y., Bennett D.H., Cahill T.M. Environ. Sci. Technol., 2007, 41:6940 1 [2]. Woodruff T.J., Wells E.M., Holt E.W., Burgin D.E., Axelrad D.A. Env. Health Perspect, 2007, 115:410 2 [3]. Niosh Pocket Guide to Chemical Hazards, Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health, 2007 3 [4]. Benz L., Haubrich J., Quiller R.G., Friend C.M. Surface Sci., 2009, 603:1010 4 [5]. Abraham K., Andres S., Palavinskas R., Berg K., Appel K.E., Lampen A. Mol. Nutr. Food Res., 2011, 55:1277 5 [6]. Feng Z., Hu W., Hu Y., Tang M. Proc. National Academy. Sci., 2006, 103:15404 6 [7]. Gomes R., Meek M.E., Eggleton M. Concise International Chemical Assessment Document, World Health Organization, Geneva, 2002, 924153043X 7 [8]. Grafstrom R.C., Dypbukt J.M., Willey J.C., Sundqvist K., Edman C., Atzori L., Harris C.C. Cancer Res., 1988, 48:1717 8 [9]. Iijima S. Nature,1991, 354:56 9 [10]. Mirzaei M., Giahi M. Physica E., 2010, 42:1667 10 [11]. Rezaei‒Sameti M. Physica B., 2012, 407:22 11 [12]. Baei M.T., Moghimi M., Torabi Varasteh Moradi A. Comput. Theor. Chem., 2011, 972:14 12 [13]. Anurag S., Maya S., Neha T. J. Comp. Theo. Nanosci., 2012, 9:1693 13 [14]. Rezaei‒Sameti M. Phys. B., 2012, 407:3717 14 [15]. Rezaei Sameti M., Amirian B. Asian J. Nanosci. Mat., 2018, 1:262 15 [16]. Rezaei‒Sameti M. Quantum Matt.,2013, 2:396 16 [17]. Baei M.T. Monat. Chem. Mon., 2012, 143:881 17 [18]. Baei M.T., Ahmadi Peyghan A., Moghimi M. Monat. Chem. Mon., 2012, 143:1627 18 [19]. Mirzaei M., Meshkinfam M. Solid. State. Sci., 2011, 13:1926 19 [20]. Rezaei‒Sameti M. Arabian J. Chem., 2015, 8:168 20 [21]. Esrafili M.D. J. Fullerenes, Nanotubes.Carbon Nanostr., 2015, 23:142 21 [22]. Ahmadi Peyghan A., Baei M.T., Moghimi M., Hashemian S. J. Clust. Sci., 2013, 24:49 22 [23]. Beheshtian J., Baei M.T. Surface Sci., 2012, 606:981 23 [24]. Baei M.T., Varasteh Moradi A., Torabi P., Moghimi M. Monatsh. Für. Chem. Chem. Monthly., 2012, 143:37 24 [25]. Baei M.T., Varasteh Moradi A., Moghimi M., Torabi P. Comp. Theo. Chem., 2011, 967:179 25 [26]. Kanania Y., Baei M. T., Varasteh Moradia A., Soltanic A. Physica E., 2014, 59:66 26 [27]. Zahra Sayyad‒Alangi S., Baei M.T., Hashemian S. J. Sulfur Chem., 2013, 34:407 27 [28]. Zahra Sayyad‒Alangi S., Hashemian S., Baei M. T. J. Phosphorus, Sulfur, Silicon Related Elements., 2014, 189:453 28 [29]. Soltani A., Ramezani Taghartapeh M., Mighani H., Pahlevani A.A., Mashkoor R. App. Surface Sci., 2012, 259:637 29 [30]. Soleymanabadi H., Kamfiroozi M., Ahmadi A. J. Mol. Model., 2012, 18:2343 30 [31]. Rezaei‒Sameti M., Saki F. Phys. Chem. Res., 2015, 3:265 31 [32]. Rezaei‒Sameti M., Dadfar E. A. Iranian J. hys. Res., 2015, 15:41 32 [33]. Rezaei‒Sameti M., Yaghoobi S. Comp. Condens Mat., 2015, 3:21 33 [34]. Bader R.F.W. Acc. Chem. Res., 1985, 18:9 34 [35]. Biegler‐König F., Schönbohm J. J. Computational Chem., 2002, 23:1489 35 [36]. Shahabi M., Raissi H. J. Incl. Phenom. MAcrocyc. Chem., 2016, 84:99 36 [37]. Johnson E. R., Keinan S., Mori‒Sanchez P. J. Am. Chem. Soc., 2010, 132:6498 37 [38]. Runge E., Gross E. K. U. Phy. Rev. Lett., 1984, 52:997 38
ORIGINAL_ARTICLE Highly effectual synthesis of 4H-pyrano [2, 3-c] pyrazoles using N1, N1, N2, N2-tetramethyl-N1, N2-bis (sulfo) ethane-1, 2-diaminium trifluoroacetate as a dual-functional catalyst In this research study, highly effective preparation of 4H-pyrano[2, 3-c]pyrazoles was discussed. The one-pot multi-component reaction between the malononitrile, arylaldehydes and 3-methyl-1-phenyl-1H-pyrazol-5 (4H)-one using protic acidic ionic liquid N1, N1, N2, N2-tetramethyl-N1, N2-bis (sulfo) ethane-1, 2-diaminium trifluoroacetate ([TMBSED][TFA]2) under the mild and solvent-free conditions have furnished the title compounds with high yields in short times. Additionally, an attractive mechanism considering dual-functionality of the catalyst was proposed ([TMBSED][TFA]2 with acidic and basic sites). https://www.ajnanomat.com/article_85847_9e61c239228de1fb2a2a9ddac09ad592.pdf 2019-10-01T11:23:20 2020-07-16T11:23:20 413 420 10.26655/AJNANOMAT.2019.4.4 4H-pyrano[2 3-c]pyrazole Protic acidic ionic liquid N1 N1 N2 N2-tetramethyl-N1 N2-bis (sulfo) ethane-1 2-diaminium trifluoroacetate ([TMBSED][TFA]2) Arylaldehyde 3-methyl-1-phenyl-1H-pyrazol-5 (4H)-one Mostafa Karami [email protected] true 1 Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran LEAD_AUTHOR Maryam Maghsoudi true 2 Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran AUTHOR Maria Merajoddin [email protected] true 3 Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran AUTHOR Abdolkarim Zare [email protected] true 4 Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran AUTHOR [1]. Wua T.Y., Su S.G., Gung S.T., Lin M.W., Lin Y.C., Ou-Yang W.C., Sun I.W., Lai C.A. J Iranian Chem Soc., 2011, 8:149 1 [2]. Sakaebe H., Matsumoto H. Electrochem Commun, 2003, 5:594 2 [3]. Gou S.P., Sun I.W. Electrochim Acta, 2008, 53:2538 3 [4]. Ue M., Takeda M., Toriumi A., Kominato A., Hagiwara R., Ito Y. Electrochem Soc., 2003, 150: A499 4 [5]. Chang J.K., Lee M.T., Tsai W.T., Deng M.J., Sun I.W. Chem Mater., 2009, 21:2688 5 [6]. Youseftabar-Miri L., Hosseinjani-Pirdehi H. Asian J Green Chem., 2017, 1:56 6 [7]. Zolfigol M.A., Khazaei A., Moosavi-Zare A.R., Zare A., Kruger H.G., Asgari Z., Khakyzadeh V., Kazem-Rostami M. J Org Chem., 2012, 77:3640 7 [8]. Rezayati S., Hajinasiri R., Hossaini Z., Abbaspour S. Asian J Green Chem., 2018, 2:268 8 [9]. Sajjadifar S., Mohammadi-Aghdam S. Asian J. Green Chem., 2017, 1:1 9 [10]. Vekariya R.L. J Mol Liq., 2017, 227:44 10 [11]. Kordrostami Z., Zare A. J Appl Chem Res., 2018, 12:42 11 [12]. Moosavi-Zare A.R., Zolfigol M.A., Zarei M., Zare A., Khakyzadeh V., Hasaninejad A. Appl Catal A., 2013, 467:61 12 [13]. Momeni A.R., Samimi H., Vaezzadeh H. Chem Methodol, 2018, 2:253 13 [14]. Kamran S., Amiri Shiri N. Chem Methodol, 2018, 2:23 14 [15]. Elziaty A.K., Mostafa O.E.A., El-Bordany E.A., Nabil M., Madkour H.M.F. Int J Sci Eng Res., 2014, 5:727 15 [16]. Sangani C.B., Mungra D.C., Patel M.P., Patel R.G. Chin Chem Lett., 2012, 23:57 16 [17]. Kuo S.C., Huang L.J., Nakamura H. J Med Chem., 1984, 27: 539 17 [18]. Colotta V., Catarzi D., Varano F., Melani F., Filacchioni G., Cecchi L., Trincavelli L., Martini C., Lucacchini A. Il Farmaco, 1998, 53:189 18 [19]. Wang J.L., Liu D., Zheng Z.J., Shan S., Han X., Srinivasula S.M., Croce C.M., Alnemri E.S., Huang Z. PNAS., 2000, 97:7124 19 [20]. Zaki M.E.A., Soliman H.A., Hiekal O.A., Rashad A.E. Z Naturforsch, 2006, 61c:1 20 [21]. Abdel-Rahman A.H., Keshk E.M., Hanna M.A., El-Bady S.M. Bioorg Med Chem., 2004, 12:2483 21 [22]. Abdelrazek F.M., Metz P., Kataeva O., Jäger A., El-Mahrouky S.F. Arch Pharm, 2007, 340:543 22 [23]. Foloppe N., Fisher L.M., Howes R., Potter A., Robertson A.G.S., Surgenor A.E. Bioorg Med Chem., 2006, 14:4792 23 [24]. Eskandari K., Karami B., Khodabakhshi S. Catal Commun, 2014, 54:124 24 [25]. Farahi M., Karami B., Sedighimehr I., Mohamadi Tanuraghaj H. Chin Chem Lett., 2014, 25:1580 25 [26]. Iravani N., Keshavarz M., Shojaeian Kish H.A., Parandvar R. Chin J Catal., 2015, 36:626 26 [27]. Maleki B., Eshghi H., Barghamadi M., Nasiri N., Khojastehnezhad A., Ashrafi S.S., Pourshiani O. Res Chem Intermed., 2016, 42:3071 27 [28]. Shi D., Mou J., Zhuang Q., Niu L., Wu N., Wang X. Synth Commun, 2004, 34:4557 28 [29]. Konakanchi R., Gondru R., Nishtala V.B., Kotha L.R. Synth Commun, 2018, 48:1994 29 [30]. Jin T.S., Zhao R.Q., Li T.S. ARKIVOK., 2006, xi:176 30 [31]. Maleki B., Nasiri N., Tayebee R., Khojastehnezhad A., Akhlaghi H.A. RSC., 2016, Adv 6: 79128 31 [32]. Vafajoo Z., Hazeri N., Maghsoodlou M.T., Veisi H. Chin Chem Lett., 2015, 26:973 32 [33]. Himaja M., Poppy D., Asif K. Int J Res Ayurveda Pharm., 2011, 2:1079 33 [34]. Moosavi-Zare A.R., Zolfigol M.A., Zarei M., Zare A., Khakyzadeh V. J Mol Liq., 2015, 211:373 34 [35]. Arzehgar Z., Sajjadifar S., Fekri M.H. Asian J Nanosci Mater., 2019, 2:251 35 [36]. Moosavi-Zare A.R., Zolfigol M.A., Noroozizadeh E., Khaledian O., Shirmardi Shaghasemi B. Res Chem Intermed., 2016, 42:4759 36 [37]. Momeni A.R., Samimi H., Vaezzadeh H. Chem Method., 2018, 2:260 37 [38]. Behbahani F.K., Shahbazi R. Chem Method., 2018, 2:270 38 [39]. Kazemi E., Davoodnia A., Basafa S., Nakhaei A., Tavakoli-Hoseini N. Adv J Chem A., 2018, 1:96 39
ORIGINAL_ARTICLE Comparison of TiO2 nanoparticles impact with TiO2/CNTs nano hybrid on microbial community of staphylococcus There has been an increase in carbon nanotubes (CNT) uses in different industries; however, its impact on the environment is still under a vast consideration and investigation. In this research study, the soil with staphylococcus has been exposed to pure TiO2 and TiO2/CNT. Also, the community of the staphylococcus was studied using the scanning electron microscopy (SEM). It has been observed that, the microbial community has decreased tremendously after the titanium oxide was doped with CNT. This study suggests that, the TiO2/CNTs can be a much more effective potential material for altering the microbial community compared with the TiO2. These findings could be useful for creating antibacterial agents for the soil using TiO2/CNTs nano hubrid .Further investigation of the TiO2/CNTs mechanism could prove useful for industrial uses or altering microbial communities. https://www.ajnanomat.com/article_86077_f488a4f804d7d81b952784713ac4c3fe.pdf 2019-10-01T11:23:20 2020-07-16T11:23:20 421 424 10.26655/AJNANOMAT.2019.4.5 TiO2 TiO2/CNTs microbial community effect of CNT Staphylococcus Ghazaleh Allaedini [email protected] true 1 Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia LEAD_AUTHOR Siti Masrinda Tasirin [email protected] true 2 Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia AUTHOR [1]. Harris L.G., Foster S.J., Richards R.G. Eur Cell Mater , 2002, 4:1 1 [2]. Roszak D.B., Colwell R.R. Microbiological Reviews, 1987, 51:365 2 [3]. Chudobova D., Dostalova S., Blazkova I., Michalek P., Ruttkay-Nedecky B., Sklenar M., Nejdl L. International journal of environmental research and public health , 2014, 11:3233 3 [4]. Von Nussbaum F., Brands M., Hinzen B., Weigand S., Häbich D. Angewandte Chemie International Edition, 2006, 45:5072 4 [5]. Kang S, Pinault M., Pfefferle D.L., Elimelech M. Langmuir, 2007, 23:8670 5 [6]. Tong Z., Bischoff M., Nies F.L., Myer P., Applegate B., Turco F.R. Environmental science & technology, 2012, 46:13471 6 [7]. Chung H., Son Y., Yoon T.K., Kim S., Kim W. Ecotoxicology and Environmental Safety, 2011, 74:569 7 [8]. Ozaki A. Assessing the Effects of Titanium Dioxide Nanoparticles on Microbial Communities in Stream Sediment Using Artificial Streams and High Throughput Screening. 2013 8 [9]. Tsuang Y.H., Sun J.S., Huang Y.C., Lu C.H., Chang W.H.S., Wang C.C. Artificial Organs, 2008, 32:167 9 [10]. Allaedini G., Aminayi P., Tasirin S.M. Chemical Engineering Research and Design, 2016, 112:163 10 [11]. Romero L., Binions R. Langmuir , 2013, 29:13542 11 [12]. Hardcastle F.D. Journal of the Arkansas Academy of Science, 2011, 65:43 12 [13]. Sadeghian S., Khanlari M.R. International Journal of Applied Physics and Mathematics, 2014, 4:363 13
ORIGINAL_ARTICLE Antibacterial activity of magnesium oxide nanostructures prepared by hydrothermal method In this research study, the magnesium oxide nanoparticles were synthesized using an inexpensive and simple hydrothermal method. A pure magnesium metal powder, de-ionized water, and hydrogen peroxide (H2O2) was utilized as the starting materials. The synthesized MgO was dense, uniformly distributed with a relatively spherical shape, without any cracks and voids as confirmed by the scaning electron microscopy (SEM) analysis. The structure was crystalline with a high purity. No other peak corresponding to any other material or metal could be ascertained from powder X-ray diffraction (XRD) pattern. The crystallite size of the prepared samples was found to be nearly 18 nm which was favorable for antibacterial activity. The antibacterial activity of MgO nanostructures was carried out by using disc diffusion method. The inhibition zones of diameters = 1 mm were observed in case of salmonella and Staphylococcus aureus, however, in case of E. Coli inhibition zones of diameter = 2 mm was obtained. https://www.ajnanomat.com/article_88468_edb9c5aece9bd6e985c2355b3cba822b.pdf 2019-10-01T11:23:20 2020-07-16T11:23:20 425 430 10.26655/AJNANOMAT.2019.4.6 Hydrothermal method Disc diffusion method Antimicrobial activity Shah Rukh [email protected] true 1 Special Centre for Nanoscience, Department of Physics, NIT Srinagar, J&K, India-190006 Special Centre for Nanoscience, Department of Physics, NIT Srinagar, J&K, India-190006 Special Centre for Nanoscience, Department of Physics, NIT Srinagar, J&K, India-190006 AUTHOR Ashaq Hussain Sofi [email protected] true 2 Special Centre for Nanoscience, Department of Physics, NIT Srinagar, J&K, India-190006 Special Centre for Nanoscience, Department of Physics, NIT Srinagar, J&K, India-190006 Special Centre for Nanoscience, Department of Physics, NIT Srinagar, J&K, India-190006 LEAD_AUTHOR Mohammad Ashraf Shah [email protected] true 3 Special Centre for Nanoscience, Department of Physics, NIT Srinagar, J&K, India-190006 Special Centre for Nanoscience, Department of Physics, NIT Srinagar, J&K, India-190006 Special Centre for Nanoscience, Department of Physics, NIT Srinagar, J&K, India-190006 AUTHOR Shayista Yousuf [email protected] true 4 SSM College of Engineering and Technology, Baramulla, J&K, India-193121 SSM College of Engineering and Technology, Baramulla, J&K, India-193121 SSM College of Engineering and Technology, Baramulla, J&K, India-193121 AUTHOR [1]. Leung Y.H., Ng A.M., Xu X., Shen Z., Gethings L.A., Wong M.T., Lee P.K. Small, 2014, 10:1171 1 [2]. Krishnamoorthy K., Manivannan G., Kim S.J., Jeyasubramanian K., Premanathan M. Journal of Nanoparticle Research, 2012, 14:1063 2 [3]. Jin T., He Y. Journal of Nanoparticle Research, 2011, 13:6877 3 [4]. Bindhu M.R., Umadevi M., Micheal M.K., Arasu M.V., Al-Dhabi N.A. Materials Letters, 2016, 166:19 4 [5]. Zhu X., Wu D., Wang W., Tan F., Wong P. K., Wang X., Qiao X. Journal of Alloys and Compounds, 2016, 684:282 5 [6]. Karthik K., Dhanuskodi S., Kumar S.P., Gobinath C., Sivaramakrishnan S. Materials Letters, 2017, 206:217 6 [7]. Sundrarajan M., Suresh J., Gandhi R.R. Digest journal of nanomaterials and biostructures, 2012, 7:983 7 [8]. Tang Z.X., Fang X.J., Zhang Z.L., Zhou T., Zhang X.Y., Shi L.E. Brazilian Journal of Chemical Engineering, 2012, 29:775 8 [9]. Hirota K., Sugimoto M., Kato M., Tsukagoshi K., Tanigawa T., Sugimoto H. Ceramics International, 2010, 36:497 9 [10]. Rao Y., Wang W., Tan F., Cai Y., Lu J., Qiao X. Applied Surface Science, 2013, 284:726 10 [11]. Ohira T., Kawamura M., Fukuda M., Alvarez K., Özkal B., Yamamoto O. Journal of materials engineering and performance, 2010, 19:374 11 [12]. Rahman M.S., Rashid M.A. Oriental Pharm. Exp. Med., 2008, 8:47 12 [13]. Gokulakrishnan R., Ravikumar S., Raj J.A. Asian Pacific Journal of Tropical Disease, 2012, 2:411 13 [14]. Yamamoto O., Ohira T., Alvarez K., Fukuda, M. Materials Science and Engineering: B, 2010, 173:208 14
ORIGINAL_ARTICLE Comparative investigations of synthesis TiO2 Nano-Particles from four different types of alcohols by Sol-Gel method and evaluation of their antibacterial activity TiO2 nanoparticles were synthesized using a simple reaction of TiCl4 with different types of primary and secondary alcohols. Four different alcohols (ethanol, isopropyl, isobutyl, and isobentyl alcohol) were investigated. The experiments were carried out to compare the products of the reactions with different precursors. The gelatine products were calcined at 400 °C and at 1000 °C in a box furnace and the effect of calcination temperature on the feature of nano-particles was studied. The synthesized TiO2 nanoparticles were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results revealed that the average particle size was 8.9-18.4 nm. The antibacterial result of titanium dioxide nanoparticles at four types of bacteria was two gram-positive (Staphylococcus aureus and Streptococcus sp.) and two gram-negative (Escherichia coli and Klebsiella sp.). Also, nanoparticles titanium dioxide did not have any effect on these types of bacteria. The sol-gel method could be used for applications that involve nano-crystalline TiO2 with anatase phase with low cost and simple preparation. https://www.ajnanomat.com/article_89679_117fd3139c8c8798c22e23084b908547.pdf 2019-10-01T11:23:20 2020-07-16T11:23:20 431 438 10.26655/AJNANOMAT.2019.4.7 TiO2 nanoparticles Synthesis Sol-gel method alchols Antibacterial study Mariam Farag Ambaraka [email protected] true 1 Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya LEAD_AUTHOR Fawzia Muftah Aljazwia [email protected] true 2 Department of Botany, Faculty of Science, University of Benghazi, Benghazi, Libya Department of Botany, Faculty of Science, University of Benghazi, Benghazi, Libya Department of Botany, Faculty of Science, University of Benghazi, Benghazi, Libya AUTHOR Randa Fawzi Alsupikhe [email protected] true 3 Department of Botany, Faculty of Science, University of Benghazi, Benghazi, Libya Department of Botany, Faculty of Science, University of Benghazi, Benghazi, Libya Department of Botany, Faculty of Science, University of Benghazi, Benghazi, Libya AUTHOR [1]. Wolfgang G.K., SemmLer-Behnke M., Qasim Ch. Nano Today, 2010, 5:165 1 [2]. Baolin H., Juei J.T., Kong Y.L., Hanfan Liu. Journal of Molecular Catalysis A: Chemical, 2004, 221:121 2 [3]. Hee Dong J., Kim Seong-Kil. Materials Research Bulletin, 2001, 36:627 3 [4]. Sara M., Askari M., Sasani Ghamsari M. Journal of Materials Processing Technology, 2007, 189:296 4 [5]. Sundrarajan M., Gowri S. Chalcogenide Lett , 2011, 8:447 5 [6]. Samira B., Kamyar Sh., Bee Abd Hamid Sh. Journal of Chemistry 2013, 2013:5 pages 6 [7]. Sara M., Askari M., Sasani Ghamsari M. Journal of Materials Processing Technology, 2007, 189: 296 7 [8]. Mahmoud B., Masoud M., Sahar E. Journal of Theoretical and Applied Physics, 2017, 11:79 8 [9]. Surhayani Jefri SN., Abdullah A.H., Mohammad E.N. Asian Journal of Green Chemistry, 2019, 3:271 9 [10]. Azaroff L.V., Elements of X-Ray Crystallography, McGraw-Hill, New York, 1968, 552 10 [11]. Haider A.J., AL-Anbari R.H., Khadim G.R. TMREES, 2017, 119:332 11 [12]. Sirimahachai U., Phongpaichit S., Wongnawa S. Songklanakarin J Sci Technol., 2009, 31:517 12 [13]. Bonnet M., Massard C., Philippe V., Camares O., Awitor K.O. J. Biomater. Nanobiotechnol., 2015, 6: 213 13 [14]. Jahangirian H., Haron M. J., Ismail M. H. S., Rafiee-Moghaddam R., Afsah-Hejri L., Abdollahi Y., Rezayi M., Vafaei N. Digest J. Nanomater. Biostru., 2013, 8:1263 14 [15]. Mahdy S.A., Mohammed W.H., Emad H., Abdul Kareem H., Shamel R., Mahdi S. Journal of Babylon University/Pure and Applied Sciences/ 2017, 25:955 15
ORIGINAL_ARTICLE A computational study of thermophysical, HOMO, LUMO, vibrational spectrum and UV-visible spectrum of cannabicyclol (CBL), and cannabigerol (CBG) using DFT Cannabicyclol, also called CBL, is one of the least known and studied isomer of cannabinoids in the cannabis plant, and it is the precursor of the different cannabinoids found in marijuana plant having with widespread medicinal use. In this work, the thermophysical properties of CBL such as, free energy, entropy, dipole moment, binding energy, nuclear energy, electronics energy, and heat of formation were estimated using density functional theory for developing use as pharmaceutical pursues. In addition, the chemical reactivity properties including highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), HOMO-LUMO gap, ionization potential, electronegativity, hardness, softness, and electron affinity were evaluated. It was found that, the magnitude of HOMO was -8.98 and -8.53, LUMO was 0.19, -0.31 and HOMO –LUMO gap was -9.17 and -8.22 eV of CBL and CBG, respectively. The vibrational spectrum and electronics spectrum were simulated for identification and characterization. These studies provided a proper and predictable data for further use in any chemical and pharmaceutical purpose. https://www.ajnanomat.com/article_91528_291a0246c82ffb71925208b2effa65f9.pdf 2019-10-01T11:23:20 2020-07-16T11:23:20 439 447 10.26655/AJNANOMAT.2019.4.8 Cannabis HOMO LUMO DFT vibrational spectrum and electronics spectrum Md Nuruzzaman Sarker [email protected] true 1 Department of Physics, European University of Bangladesh, Dhaka-1216, Bangladesh Department of Physics, European University of Bangladesh, Dhaka-1216, Bangladesh Department of Physics, European University of Bangladesh, Dhaka-1216, Bangladesh AUTHOR Ajoy Kumer [email protected] true 2 Department of Chemistry, European University of Bangladesh, Dhaka-1216, Bangladesh Department of Chemistry, European University of Bangladesh, Dhaka-1216, Bangladesh Department of Chemistry, European University of Bangladesh, Dhaka-1216, Bangladesh LEAD_AUTHOR Mohammad Jahidul Islam [email protected] true 3 Department of Physics, European University of Bangladesh, Dhaka-1216, Bangladesh Department of Physics, European University of Bangladesh, Dhaka-1216, Bangladesh Department of Physics, European University of Bangladesh, Dhaka-1216, Bangladesh AUTHOR Sunanda Paul [email protected] true 4 Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Hathazari-4334, Bangladesh Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Hathazari-4334, Bangladesh Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Hathazari-4334, Bangladesh AUTHOR [1]. Andre C.M.H., Francois j. Frontiers in plant science, 2016, 7:19 1 [2]. Butsic V.B., Jacob C. Environmental Research Letters, 2016, 11:044023 2 [3]. Mukherjee A., Chandra Roy S., De Bera S., Jiang H.E., Li, Li X., Li C.S., Bera S. Genetic Resources and Crop Evolution, 2008, 55:481 3 [4]. Christensen H.D.F., RoI Gidley J.T., Rosenfeld R., Boegli G., Testino L., Brine D.R., Pitt C.G., Wall M.E. Science, 1971, 172:165 4 [5]. Mariani J.J.B., Daniel H., Margaret L., Frances R. 2011. Drug and alcohol dependence, 2011, 113:249 5 [6]. Huestis M.A.G., David A., Heishman S.J., Preston K.L., Nelson R.A., Moolchan E.T., Frank, R.A. Archives of General Psychiatry, 2001, 58:322 6 [7]. Lane S.D.C., Don R., Tcheremissine O.V., Lieving L.M., Pietras C.J. Neuropsychopharmacology, 2005, 30:800 7 [8]. Fleming M.P.C., Robert C. J Int Hemp Assoc, 1998, 5:280 8 [9]. Kumar R.C., Pertwee R.G. Anaesthesia, 2001, 56:1059 9 [10]. Islam M.J., Kumer A., Sarker N., Paul S., Zannat A. Advanced Journal of Chemistry-Section A, 2019, 2:316 10 [11]. Islam M.J., Sarker N., Kumer A., Paul S. International journal of Advanced Biological and Biomedical Research, 2019, 7:318 11 [12]. Ajoy K., Ahmed B., Sharif M , Al-Mamun A. Asian journal of physical and chemical science, 2017, 4:1 12 [13]. Kumer A., Sarkar M., Nuruzzaman P.S. Eurasian Journal of Environmental Research, 2019, 3:1 13 [14]. Kumer A., Khan W. Proceeding of 8th international conference on green chemistry, 8th IUPAC Conference-2018, shangri-la hotel, bangkok, Thailand, 2018 14 [15]. Kumer A., Sarker M.N., Paul S. International Journal of Chemistry and Technology, 2019, 3:26 15 [16]. Kumer A., Sarker M.N., Paul S. Turkish Computational and Theoretical Chemistry, 2019, 3:59 16 [17]. Kumer A., Sarker M.N., Paul S., Zannat A. Advanced Journal of Chemistry-Section A, 2019, 2:190 17 [18]. Hossain M.I., Kumer A. Asian Journal of Physical and Chemical Sciences, 2017, 4:1 18 [19]. Hossain M.I., Kumer A. Asian journal of Chemical Science, 2017, 3:1 19 [20]. Hossain M.I., Kumer A., Begum S.H. Asian Journal of Physical and Chemical Science, 2018, 5:1 20 [21]. Howard A., McIver J., Collins J. Hypercube Inc., Waterloo; 1994 21 [22]. Tsuneda T.S., Suzuki J.W., Satoshi Hirao K. The Journal of Chemical Physics, 2010, 133: 174101 22