ORIGINAL_ARTICLE Synergistic effect of liquid crystals on the additive performance of poly acrylate in lubricating oil Multifunctional additive performance of poly acrylate in presence of selective liquid crystal structures were evaluated by standard ASTM methods. Homopolymer of mixed acrylate (octyl, decyl and dodecyl) was synthesised and characterized by thermo gravimetric, spectroscopy and viscometric methods. Additive performances of the polymer were evaluated as viscosity modifier (VM), thickening agent (TA), pour point depressant (PPD) and anti wear (AW) additive. Physical blend of the polymer with six different types of liquid crystals (LC) were also made and evaluated for their performance. The results indicated that all the LC-blended samples act as better VM, PPD, along with excellent AW and thickening performance compare to the pure polymer sample. https://www.ajnanomat.com/article_82345_88b71d055dbfa648b290375dc59b7093.pdf 2019-07-01T11:23:20 2020-07-12T11:23:20 257 270 10.26655/AJNANOMAT.2019.2.3.1 Anti wear pour point depressant viscosity modifier multifunctional performances Mahua Upadhyay [email protected] true 1 Natural Product and Polymer Chemistry Laboratory, Department of Chemistry, University of North Bengal, Darjeeling-734013, India. Natural Product and Polymer Chemistry Laboratory, Department of Chemistry, University of North Bengal, Darjeeling-734013, India. Natural Product and Polymer Chemistry Laboratory, Department of Chemistry, University of North Bengal, Darjeeling-734013, India. AUTHOR Malay Kumar Das [email protected] true 2 Department of Physics, University of North Bengal, Darjeeling-734013, India. Department of Physics, University of North Bengal, Darjeeling-734013, India. Department of Physics, University of North Bengal, Darjeeling-734013, India. AUTHOR R Dąbrowski [email protected] true 3 Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland. Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland. Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland. AUTHOR Pranab Ghosh [email protected] true 4 Natural Product and Polymer Chemistry Laboratory, Department of Chemistry, University of North Bengal, Darjeeling-734013, India. Natural Product and Polymer Chemistry Laboratory, Department of Chemistry, University of North Bengal, Darjeeling-734013, India. Natural Product and Polymer Chemistry Laboratory, Department of Chemistry, University of North Bengal, Darjeeling-734013, India. LEAD_AUTHOR [1]. Ghosh P., Das M. J. Chem. Eng. Data, 2013, 58:510 1 [2]. Jung K.M., Chun B.H., Park S.H., Lee C.H., Kim S.H. J. Appl. Polym. Sci., 2011, 120:2579 2 [3]. Du T., Wang S., Liu H., Song C., Nie Y. Petrol. Sci. Technol., 2012, 30:212 3 [4]. Khidr T.T. Petrol. Sci. Technol., 2007, 25:671 4 [5]. Ghosh P., Karmakar G., Das M.K. Petrol. Sci. Technol., 2014, 32:281 5 [6]. Carrión F.J., Martínez-Nicolás G., Iglesias P., Sanes J., Bermúdez M.D. Int. J. Mol. Sci., 2009, 10:4102 6 [7]. Eidenschink R. Angew. Chem. Int. Ed., 1988, 27:1579 7 [8]. Tichi J.A. Tribol. Trans., 1990, 33:363 8 [9]. Ghosh P., Upadhyay M., Das M.K. Liq. Cryst., 2014, 41:30 9 [10]. Brahman D., Sinha B. J. Chem. Eng., 2011, 56:3073 10 [11]. Brahman D., Sinha B. J. Chem. Thermodyn., 2013, 67:13 11 [12]. Tanveer S., Prasad R. Ind. J. Chem. Technol., 2006, 13:398 12 [13]. Ghosh P., Das T., Nandi D. Res. J. Chem. Environ., 2009, 13:17 13 [14]. Ghosh P., Pantar A.V., Rao U.S., Sarma A.S. Ind. J. Chem. Technol., 1998, 5:309 14 [15]. Mortier R.M., Fox M.F., Orszulik S.T. Chemistry and Technology of Lubricants, Springer, Dordrecht. 15 [16]. Nassar A.M. Petrol. Sci. Technol., 2008, 26:514 16 [17]. Penfold J., Staples E., Cummins P., Tucker I., Thompson L., Thomas R.K., Simister E.A. R.Lu J. J. Chem. Soc., Faraday Trans., 1996, 92:1773 17 [18]. Abdul A., Nasser A.A.A.A.M., Ahmeh N.S., Kafrawy A.S.E.I., Kamal R.S. Petrol. Sci. Technol., 2009, 27:20 18 [19]. Choudhary R.B., Anand O.N., Tyagi O.S., J. Chem. Sci., 2009, 121:353 19 [20]. Latyshev V.N., Novikov V.V., A.Syrbu S., Kolbashov M.A. J. Friction. Wear., 2009, 30:411 20 [21]. Molenda J., Makowska M. Tribol. Lett. 2006, 21:39 21
ORIGINAL_ARTICLE Synthesis and characterization of CaO catalyst obtained from achatina achatina and its application in biodiesel production In this research study, Achatina achatinashells was used as the source of raw material to produce calcium oxide which was used as a catalyst in the production of biodiesel. The main aim of this study was to investigate the effect of varying temperatures on the calcium oxide formed using A. achatina during the calcination process for their possible use as a heterogeneous catalyst in the production of biodiesel. The shells were first grinded and then calcinated at different temperatures ranging from 0 °C to 1000 °C. After calcination, the CaCO3 present in the A. achatinashell was converted to calcium oxide. The obtained calcium oxide was characterized using Fourier transform infrared spectroscopy (FT-IR). The asymmetric stretching of the CO32- (cm-1) absorption was not proportional with the increasing temperature as it was observed over the plane vibrational modes of CO32-(cm-1). Also, the O-Hstretching band (cm-1) at 100 °C and 800 °C had similar absorption values. Pearson correlation revealed both negative and positive relationship between the absorption rate and the temperature, disclosed a significant difference at pA. achatina shell is a suitable catalyst in the production of Biodiesel because it is readily available and has no adverse effect on the environment. https://www.ajnanomat.com/article_82453_ec37791ed2d8e72379992e0882422343.pdf 2019-07-01T11:23:20 2020-07-12T11:23:20 271 277 10.26655/AJNANOMAT.2019.2.3.2 Achatina achatina Calcium oxide Heterogeneous catalyst Biodiesel Oluwatobi O. Amusan true 1 Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria AUTHOR Hitler Louis [email protected] true 2 CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China LEAD_AUTHOR Adejoke T. Hamzat true 3 Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria AUTHOR Amusan Oluwatobi Omotola [email protected] true 4 Department of Chemistry, University of Ilorin, Ilorin Department of Chemistry, University of Ilorin, Ilorin Department of Chemistry, University of Ilorin, Ilorin AUTHOR Oluwatomisin Oyebanji [email protected] true 5 Department of Chemistry, University of Ibadan, Ibadan, Oyo State, Nigeria Department of Chemistry, University of Ibadan, Ibadan, Oyo State, Nigeria Department of Chemistry, University of Ibadan, Ibadan, Oyo State, Nigeria AUTHOR Ayodeji T. Alagbe true 6 Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria AUTHOR Thomas O. Magu true 7 CAS Key Laboratory for Green Printing, Institute of Chemistry, University of Chinese Academy of Sciences, 100190 Beijing, China CAS Key Laboratory for Green Printing, Institute of Chemistry, University of Chinese Academy of Sciences, 100190 Beijing, China CAS Key Laboratory for Green Printing, Institute of Chemistry, University of Chinese Academy of Sciences, 100190 Beijing, China AUTHOR [1]. Basumatary S. J. Chem. Bio. Phy. Sci., 2012, 3:551 1 [2]. Basumatary S. Res. J. Chem. Sci., 2013, 3:99 2 [3]. Atadashi I.M., Aroua M.K., A.R., Abdul Aziz, N.M.N. J. Ind. Eng. Chem., 2013, 19:14 3 [4]. Sylvester C., Izah E.I, Ohimain A. Greener J. Biol. Sci. 2013, 3:001 4 [5]. Nivetha S., Vetha R.D. J. Chem. Pharm. Res., 2013, 5:53 5 [6]. Lam M.K., Lee K.T., Mohamed A.R. Biotechnol. Adv., 2010, 28:500 6 [7]. Melero J.A., Iglesias J., Morales G. Green Chem., 2009, 11:1285 7 [8]. Sakunthala M., Sridevi V., Kumar K.V., Rani K. J. Chem. Bio. Phy. Sci., 2013, 3:1564 8 [9]. Annam R.A., Aravindh K.J. Int. J. Chem. Tech. Research., 2015, 8:651 9 [10]. Magu T.O., Ita B.I., Ehi-Eromosele C.O. Journal of Industrial Technology, 2018, 3:1 10 [11]. Macleod C.S., Harvey A.P., Lee A.F., Wilson K. Chemical Engineering Journal, 2008, 135: 63 11 [12]. Marinkovic D.M., Stankovic M.V., Velickovic A.V., Avramovic J.M., Miladinovic M.R., Stamenkovic O.O., Veljkovic V.B. Renewable and Sustainable Energy Reviews, 2016, 56:1387 12 [13]. Alonso D.M., Vila F., Mariscal R., Ojeda M., Granados M.L., Santamaria-Gonzalez J., 2010, 158:114 13 [14]. Aldes L., Palita T., Rastidian M. Indo. J. Chem., 2013, 13:176 14
ORIGINAL_ARTICLE Thermal decomposition of ammonium perchlorate-commercial nano-TiO2 mixed powder Thermal decomposition of ammonium perchlorate was improved via addition of transition metals and metal oxides. This work investigates the thermal decomposition of the ammonium perchlorate under the catalytic effect of the commercial nano-TiO2 (nTiO2). Characterization of nTiO2 showed that its average particle size ranged from 10 to 25 nm with a relatively spherical morphology. Ammonium perchlorate and nTiO2 mixes were prepared by adding three different nTiO2 mass fractionsof 1, 2, and 3 wt% to pure ammonium perchlorate. The results of thermogravimetry analysis revealed that the addition of nTiO2 to pure ammonium perchlorate resulted in a significant decline in its decomposition temperature. The most observed decrease in the decomposition temperature was 61 °C resulted from the addition of 3 wt.% nTiO2. https://www.ajnanomat.com/article_82587_6cc339d48dd32ff3c82093c969c7a6ed.pdf 2019-07-01T11:23:20 2020-07-12T11:23:20 278 285 10.26655/AJNANOMAT.2019.2.3.3 Titania Ammonium Perchlorate Thermal decomposition Nanoparticle Mostafa Mahinroosta [email protected] true 1 School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology LEAD_AUTHOR [1]. Nikam A.P., Ratnaparkhiand M.P., Chaudhari S.P. Int. J. Res. Dev. Pharm Life Sci., 2014, 3:1121 1 [2]. Marie-Isabelle B. Open Nanosci J., 2013, 5:64 2 [3]. Suresh S. Am. J. Nanosci Nanotechnol, 2013, 1:27 3 [4]. Biener J., Wittstock A., Baumann T.F., Weissmüller J., Bäumer M., Hamza A.V. Mater, 2009, 2:2404 4 [5]. MortezaAli A., Saeideh R.S. J. Nanostruct Chem., 2013, 3:35 5 [6]. Karimi L., Zohoori S. J. Nanostruct Chem., 2013, 3:32 6 [7]. Vijayalakshmi R., Rajendran V. Archives Appl. Sci. Res., 2012, 4:1183 7 [8]. Chen Y., Ma K., Wang J., Gao Y., Zhu X., Zhang W. Mater Res. Bull, 2018, 101:56 8 [9]. Ramdani Y., Liu Q., Huiquan G., Liu P., Zegaoui A., Wang J. Vacuum, 2018, 153:277 9 [10]. Chen L., Zhu D. Ceram Int., 2015, 41:7054 10 [11]. Chen W., Li F., Liu L., Li Y. J. Rare Earths, 2006, 24:543 11 [12]. Zhenye M.A., Fengsheng L., Aisi C. Nanosci, 2006, 11:142 12 [13]. Yanping W., Junwu Z., Xujie Y., Lude L., Xin W. Thermochimica Acta., 2005, 437:106 13 [14]. Hungzhen D., Xiangyang L., Guanpeng L., Lei X., Fengsheng L. Mater Process Technol, 2008, 208:494 14 [15]. Guorong D., Xujie Y., Jian C., Guohong H., Lude L., Xin W. Powder Technol, 2007, 172:27 15 [16]. Satyawati S.J., Prajakta R.P., Krishnamurthy V.N. Def. Sci. J. 2008, 58:721 16 [17]. Zhao S., Ma D. J. Nanomat., 2010, 2010:5 pages 17 [18]. Han A., Liao J., Ye M., Li Y., Peng X. Chin. J. Chem. Eng., 2011, 19:1047 18 [19]. Yifu Z., Xinghai L., Jiaorong N., Lei Y., Yalan Z., Chi H. J. Solid State Chem., 2011, 184:387 19 [20]. Yu Z., Chen L., Lu L., Yang X., Wang X. Chin. J. Catal., 2009, 30:19 20 [21]. Alizadeh-Gheshlaghi E., Shaabani B., Khodayari A., Azizian-Kalandaragh Y., Rahimi R. Powder Technol, 2012, 217:330 21 [22]. Wang J., He S., Li Z., Jing X., Zhang M., Jiang Z. J. Chem. Sci., 2009, 121:1077 22 [23]. Liu T., Wang L., Yang P., Hu B. Mater Lett., 2008, 62:4056 23 [24]. Duan H., Lin X., Liu G., Xu L. Chin. J. Chem. Eng., 2008, 16:325 24 [25]. Pratibha S., Reena D., Kapoor I.P.S., Singh G. Indian J. Chem., 2010, 49A:1339 25 [26]. Chen Y., Ma K., Wang J., Gao Y., Zhu X., Zhang W. Mater Res. Bull., 2018, 101:56 26 [27]. Mahdavi M., Farrokhpour H., Tahriri M. Mater Chem. Phys., 2017, 196:9 27 [28]. Yu C., Zhang W., Gao Y., Chen Y., Ma K., Ye J., Shen R., Yang Y. Mater Res. Bull., 2018, 97: 483 28 [29]. Paulose S., Raghavan R., George B.K. J. Ind. Eng. Chem., 2017, 53:155 29 [30]. Bu X., Liu F., Zhang Z., Wang Z., Liu J., Liu W. Mater Lett., 2018, 219:33 30 [31]. Li G., Bai W. Chem. Phys., 2018, 506:45 31 [32]. Vargeese A. Mater Chem. Phys. 2013, 139:537 32 [33]. Fujimura K., Miyake A. J. Therm Anal. Calorim, 2010, 99:27 33
ORIGINAL_ARTICLE Preparation of different manganese oxide structures via controlling the concentration and the type of the alkaline media Birnessite and manganite materials were prepared using a simple precipitation process in an alkaline medium. Potassium hydroxide and tetraethyl ammonium hydroxide (TEAH) used as the precipitating agents. Different techniques such as XRD, DSC, TGA, FT-IR, TEM and N2 adsorption analyses were employed to characterize the prepared samples. The results revealed that the formed phase in the prepared sample is dependent on the concentration of the precipitating agent. In addition, the XRD results showed the formation of various phases through controlling the concentration of the precipitating agent. Pure phase of birnessite produced in the high alkaline medium, and manganite (γ-MnOOH) at relatively low alkalinity. The samples prepared by using TEAH were well crystalline compared with the analogue one prepared by KOH. The obtained results elaborated the role of TEAH in directing the order of the particles during the preparation step. https://www.ajnanomat.com/article_82588_7d2e682b40a0ee072d3afa1b79c55363.pdf 2019-07-01T11:23:20 2020-07-12T11:23:20 286 300 10.26655/AJNANOMAT.2019.2.3.4 Transvermillion Olanzapine Piper betel films Biopolymer Samer Said [email protected] true 1 Egyptian Petroleum Research Institute, Nasr City, Egypt Egyptian Petroleum Research Institute, Nasr City, Egypt Egyptian Petroleum Research Institute, Nasr City, Egypt AUTHOR Mary Riad [email protected] true 2 Egyptian Petroleum Research Institute, Nasr City, Egypt Egyptian Petroleum Research Institute, Nasr City, Egypt Egyptian Petroleum Research Institute, Nasr City, Egypt LEAD_AUTHOR Sara Mikhail [email protected] true 3 Egyptian Petroleum Research Institute, Nasr City, Egypt Egyptian Petroleum Research Institute, Nasr City, Egypt Egyptian Petroleum Research Institute, Nasr City, Egypt AUTHOR [1]. Yu, J., Ph. Savage. Industrial Engineering Chemical Resresearch, 2000, 39:4014 1 [2]. Singh A., Fernando S. Chemical Engineering Technology, 2007, 30:1716 2 [3]. Meng Y., Song W., Huang H., Ren Z., Chen S.Y., Suib S. Journal of Amrican Chemical Society, 2014, 136:11452 3 [4]. Ahsanulhaq Q., Kim S.H., Hahn Y.B. Journal of Alloys and Compounds, 2009, 484:17 4 [5]. Manceau A., Lanson M., Takahashi Y., American Mineralogy, 2014, 99:2068 5 [6]. Yang D.S., Wang M.K. Clays-Clay Mineral, 2003, 51:96 6 [7]. Said S., Riad M., Helmy M., Mikhail S., Khali L. Journal of Nanostructure Chemistry, 2016, 6:171 7 [8]. Said S., Riad M., Helmy M., Mikhail S., Khali L. Chemical Material Research, 2014, 6:27 8 [9]. Kitchaev D., Dacek S., Sun W., Ceder G. Journal of American Chemical Society, 2017, 139:2672 9 [10]. Atkins A.L., Shaw S., Peacock C.L. Geochimistry Cosmochimistry Acta, 2014 144:109 10 [11]. Regmi R., Tackett R., Lawes G. Journal of Management Material, 2009, 321:2296 11 [12]. Athouel L., Arcidiacono P., Ramirez-Castro C., Crosnier O., Hamel C., Dandeville Y., Guillemet P., Scudeller Y., Guay D., Belanger D., et al. Electrochimical Acta, 2012, 86:268 12 [13]. Villalobos M., Escobar-Quiroz I.N., Salazar-Camacho C. Geochimstry. Cosmochimistry. Acta, 2014, 125:564 13 [14]. Liu G., Chen L., Yu J., Feng N. Applied Catalysis A: General, 2018, 568:157 14 [15]. Zhang G., Liu Y., Guo F., Hu Y., Liu X.Z., Qian Y. Solid State Communcation, 2005, 134:523 15 [16]. Saad L., Sobhi Z., Mikhail S. Egyptian Journal of Petroleum, 2002, 11:67 16 [17]. Tiana X., Yang L., Qing X., Yu K., Wang X., Sensor Actua. B., 2015, 207:34 17 [18]. Misnon I.I., Abd Aziz R., Zain N.K., Vidhyadharan M. B., Krishnan S.G., Jose R., Material Research Bulletin, 2014, 57:221 18 [19]. Huang M., Zhang Y.X., Li F., Zhang L.L., Ruoff R.S., Wen Z.Y., Liu Q. Science Rep., 2014, 4:3878 19 [20]. Yan D., Zhang H., Li S., Zhu G., Wang Z., Xu H., Yu A. Journal of Alloys and Compdounds, 2014, 607:245 20 [21]. Ghaly M., El-Dars F., Hegazy M., Abdel Rahman R. Chemical Engineering Journal, 2016, 284:1373 21 [22]. Nakayama M., Nishiyama M., Shamoto M., Tanimoto T., Tomono K., Inoue R. Journal Electrochemical Society, 2012, 159:1176 22 [23]. Dinnebier E., Billinge J. Powder Diffraction Theory and Practice The Royal Society of Chemistry, 2008; p 1-583 23 [24]. Lefkowitz J., Elzing E. Chemical Geology, 2017, 466:524 24 [25]. De Wolff P.M. Acta Crystallography, 1959, 12:341 25 [26]. Gai J., Liu J., Suib S. Chemical Material, 2002, 14:2071 26 [27]. Atique Ullah A.K.M., Fazle Kibria A.K.M., Akter M., Khan M.N.I., Maksud M.A., Jahan R.A., Firoz S.H. Journal of Saudi Chemical Society, 2017, 21:830 27 [28]. Vro D., Brsn L., Posr J. Amircan Mineralogy, 1989, 74:177 28 [29]. Zhang W., Yang Z., Liu Y., Tang S., Han X., Chen M. Journal of Crystal Growoth, 2004, 263:394 29 [30]. Liu G., Liao S., Zhu D., Hua Y., Zhou W. Chemical Engineering Journal, 2012, 213:286 30 [31]. Zhang W., Yang Z., Liu Y. Journal of Crystal Growoth, 2004, 263:394 31 [32]. Sharma P., Whittingham M. Material Letter, 2001, 48:319 32 [33]. Kang L., Zhang M., Liu Z.H., Ooi K. Spectrochimica Acta. A., 2007, 67:864 33 [34]. Potter R., Rossman G. Amrican Minerology, 1979, 64:1199 34 [35]. Kohler T., Armbrustor T., Libowitzky E. Journal of Solid State Chemistry, 1997, 133:486 35 [36]. Rives V., Prieto O., Del Arco M. Thermochima Acta., 2003, 401:95 36 [37]. Zhang Y., Qin Z., Wang G., Zhu H. Dong M., Li S., Wu Z., Li Z., Wu Z., Zhang J. Applied Catalysis Environmental B., 2013, 129:172 37 [38]. Xi G., Peng Y., Zhu Y., Xu L., Zhang W., Yu W., Qian Y. Material Research Bulletin, 2004, 39:1641 38 [39]. Li Y., Wei D., Du Y. Chemosphere, 2015, 119:282 39
ORIGINAL_ARTICLE Cyto-toxicity and oligodynamic effect of bio-synthesized silver nanoparticles from plant residue of Artocarpus altilis and its spectroscopic analysis The medicinal plant residue obtained to synthesis AgNPs is the thrust area of research today. The present research work emphasis on the AgNPs synthesized from a medicinal plant residue Artocarpus altilis whose secondary metabolites bear responsible for the confined size of the AgNPs. Further, the AgNPs were analyzed for Physico-chemical analysis, where FT-IR Peak value gives the functional groups of A. altilis. FESEM analyses show surface morphology with 44 nm. EDAX analyses of show metal precursor involved in the process. XRD patterns show the crystalline structure. The AgNPs was analysised for the antibacterial assay against five human pathogens. Finally, cyto-toxic activity of AgNPs was analyzed with two human cancer cell lines namely MCF 7 lung cancer cell line and A549 breast cancer cell line. Hence, the novel and eco-friendly AgNPs are safe with its biocompatibility which becomes a promising agent in the biomedical precisely. https://www.ajnanomat.com/article_82599_c9b3b9b4b340acc5ff4ae81845169b7d.pdf 2019-07-01T11:23:20 2020-07-12T11:23:20 301 313 10.26655/AJNANOMAT.2019.2.3.5 Cyto-toxic antibacterial Physico-chemical Crystalline Artocarpus altilis Vasanth Nayagam [email protected] true 1 Department of Botany, Alagappa University, Science Block, Karaikudi-630 003, India Department of Botany, Alagappa University, Science Block, Karaikudi-630 003, India Department of Botany, Alagappa University, Science Block, Karaikudi-630 003, India LEAD_AUTHOR Kumaravel Palanisamy true 2 Department of Biotechnology, Vysya College, Salem- 636 103.Tamil Nadu, India Department of Biotechnology, Vysya College, Salem- 636 103.Tamil Nadu, India Department of Biotechnology, Vysya College, Salem- 636 103.Tamil Nadu, India AUTHOR Dons Thiraviadoss true 3 Department of Biotechnology, Vysya College, Salem- 636 103.Tamil Nadu, India Department of Biotechnology, Vysya College, Salem- 636 103.Tamil Nadu, India Department of Biotechnology, Vysya College, Salem- 636 103.Tamil Nadu, India AUTHOR [1]. Ahmed S., Ahmad M., Swami B.L. J. Adv. Res., 2016, 7:17 1 [2]. Rai M.K., Deshmukh S.D., Ingle A.P., Gade A.K. J Appl Microbiol. 2012, 112:841 2 [3]. Anasane N., Golinska P., Wypij M., Rathod D., Dahm H., Rai M. Mycoses, 2016, 59:157 3 [4]. Wypij M., Golinska P., Dahm H., Rai M. IET Nanobiotechnol, 2017, 11:336 4 [5]. Song J.Y., Kim B.S. Bioprocess and Biosystems Engineering, 2009, 32:79 5 [6]. Briley-Saebo K., Bjørnerud A., Grant D., Ahlstrom H., Berg T., Kindberg G.M. Cell Tissue Res., 2004, 316:315 6 [7]. Gupta A.K., Gupta M. Biomaterials, 2005, 26:3995 7 [8]. Schütt W., Grüttner C., Häfeli U.O., Zborowski M., Teller J., Putzar H. Hybridoma, 1997, 16:109 8 [9]. Mahmoudi M., Simchi A., Milani A.S., Stroeve P. J. Colloid Interface Sci., 2009, 336:510 9 [10]. Chandra Sekhar E., Krishna Rao K.S.V., Madhu Sudana Rao K., Bahadur Alisha S. Journal of Applied Pharmaceutical Science, 2018, 8:073 10 [11]. Jayasree L., Janakiram P., Madhavi R. J. World Aquacult Soc., 2006, 37:523 11 [12]. Kim S., Ryu D.Y. J. Appl. Toxicol., 2013, 33:78 12 [13]. Mallick K., Witcomb M.J. Scurrell M.S. Mater. Chem. Phys., 2005, 90:221 13 [14]. Kovács D., Szke K., Igaz N., Spengler G., Molnár J., Tóth T., Madarás D., Rázga Z., Kónya Z., BorosKiricsi I.M. Nanomedicine, 2016, 12:601 14 [15]. Mala R., Ruby Celsia A.S., Malathi Devi S., Geerthika S. Materials Science and Engineering, 2017, 225:12155 15 [16]. Charbgoo F., Ahmad M.B., Darroudi M. Int. J. Nanomed., 2017, 12:1401 16 [17]. Allafchian A., Jalali S.A.H., Aghaei F., Farhang H.R. IET Nanobiotechnol, 2018, 12:1 17 [18]. Khatami M., Heli H., Jahani P.M., Azizi H., Nobre M.A.L. IET Nanobiotechnol, 2017, 11: 709 18 [19]. Siddiqi K.S., Husen A., Rao R.A.K. J Nanobiotechnol.,2018,16:14 19 [20]. Jones S.A., Bowler P.G., Walker M., Parsons D. Wound Repair Regen, 2004, 12:288 20 [21]. Allahverdiyev A.M., Abamor E.S., Bagirova M., Rafailovich M. Fut Microb, 2011, 6:933 21 [22]. Guzman M., Dille J., Godet S. Nanomedicine, 2012, 8:37 22 [23]. Reddy N.J., Vali D.N., Rani M., Rani S.S. Mat. Sci. Eng. C., 2014, 34:115 23 [24]. Kumar S.P., Balachandran C., Duraipandiyan V., Ramasamy D., Ignacimuthu S., Al-Dhabi N.A. Appl Nanosci, 2015, 5:169 24 [25]. Kanipandian N., Kannan S., Ramesh R., Subramanian P., Thirumurugan R. Mat. Res. Bull., 2014, 49:494 25 [26]. Mosmann T. J. Immunol Methods, 1983, 65:55 26
ORIGINAL_ARTICLE A smart spproach for delivering of nanosized olanzapine using piper betel biopolymer rate controlling flexi films for transvermillion delivery The aim of the study was to prepare and characterize the nanosize drug loaded bio-flexi films using the novel bioexcipient isolated from the fresh leaves of the piper betle (bioexcipient P) and to explore the potentiality of the lip skin as a novel transvermillion drug delivery system. The bioexcipient prepared using a simplified economical process and was subjected to various physiochemical evaluations along with the spectral analysis including UV, FT-IR, SEM, Mass and 1H NMR. The nanosized bioflexi film formulated with the novel bioexcipient was screened for its functional properties, such as including filmability. Nanosized olanzapine loaded bioflexi films were formulated by using bioexcipient P as a film former and dextrose as a flexicizer. The formulated nanosized bioflexi films were subjected to various tests such as evaluating the, thickness, folding endurance, swelling index and in vitro release. The size of the nanoparticle was found to be 100 nm. The release of the nanosized olanzapine was maintained over 48 h, which was confirmed in in vitro release experiment. The results revealed that this biopolymer had a promising filmability and bioadhesivity. The formulated nanosized bioflexi films are feasible for delivering the olanzapine by transvermillion administration and for drugs that undergo first-pass metabolism. https://www.ajnanomat.com/article_83563_58223f94c9655b9c1e372b376f254979.pdf 2019-07-01T11:23:20 2020-07-12T11:23:20 314 326 10.26655/AJNANOMAT.2019.2.3.6 Transvermillion Olanzapine Piper betel films Biopolymer Nookala Venkala Satheesh Madhav [email protected] true 1 Faculty of Pharmacy, DIT University, Mussorie diversion road, Makkawala Dehradun, Uttarakhand. 248001 Faculty of Pharmacy, DIT University, Mussorie diversion road, Makkawala Dehradun, Uttarakhand. 248001 Faculty of Pharmacy, DIT University, Mussorie diversion road, Makkawala Dehradun, Uttarakhand. 248001 AUTHOR Bhavana Singh [email protected] true 2 Faculty of Pharmacy, DIT University, Mussorie diversion road, Makkawala Dehradun, Uttarakhand. 248001 Faculty of Pharmacy, DIT University, Mussorie diversion road, Makkawala Dehradun, Uttarakhand. 248001 Faculty of Pharmacy, DIT University, Mussorie diversion road, Makkawala Dehradun, Uttarakhand. 248001 LEAD_AUTHOR [1]. Barry B.W. Dermatological formulations: percutaneous absorption. New York: Marcel Dekker., 1983, p. 127-213 1 [2]. Chien Y.W. Advances in transdermal systemic medication. In: Chien YW, editor. Transdermal controlled systemic medications. New York: Marcel Dekker; 1987, p. 1-24 2 [3]. Madhav Satheesh N.V., Yadav P.A. Acta Pharm Sin B., 2013, 3:408 3 [4]. Schaefer H., Redelmeier T.E. Skin barrier: principles of percutaneous absorption. Basle: Karger; 1996, p. 213-62 4 [5]. Madhav Satheesh N.V., Yadav A.P., Yadav B. Res J Pharm., Biol Chem Sci., 2017, 8:542 5 [6]. Goswami L., Madhav Satheesh N.V., Upadhyaya K. ICPJ.,2016, 5:33 6 [7]. Sharma S., Aggarwal G., Dhawan S. Pharm Lett., 2010, 2:84 7 [8]. Emil J., Nagpal V., Balwani G., Reddi S., Saha R.N. Pharm Anal Acta., 2015, 6:89 8 [9]. Bhana N., Foster R.H., Olney R., Plosker G.L. Drugs., 2001, 61:111 9 [10]. Kantrowitz T.J., Citrome L. Expert Opin Drug Saf.,2008, 7:761 10 [11]. Narasimhan M., Bruce O.T., Masand P. Neuropsychiatr Dis Treat., 2007, 3:579 11 [12]. Aggarwal G., Dhawan S., Harikumar S.L., Pharm Dev Technol., 2013, 18:916 12 [13]. Patra B., Das T.M., Dey S.K. J Med Plants Stud.,2016, 4:185 13 [14]. Srividya S., Pillai I.S., Subramanian P.S. Int J Pharm., 2015, 5:1215 14 [15]. Mainardes R.M., Evangelista R.C. Int J Pharm.,2005, 290:137 15 [16] Yu T., Andrews G.P., Jones S.D. Mucoadhesion and characterization of mucoadhesive properties. Mucosal delivery of biopharmaceuticals biology, challenges and strategies. New York: Springer science; 2014, p 35 16 [17]. Ueda T.C., Shah P.V., Derdzinski K., Ewing G, et al. Topical and transdermal drug products. Dissolut Technol., 2010; p 12 17 [18]. Rajaram M.D., Laxman D.S. Sys Rev Pharm.,2017, 8:31 18 [19]. Nair S.R., Ling N.T, Shukkoor M.S.A., Manickam B. J Pharm Res., 2013, 6:774 19 [20]. Vora N., Lin S., Madan P.L. AJPS., 2013, 8:28 20 [21]. Kusum D.V., Saisivam S., Maria G.R., Deepti P.U. Drug Dev Ind Pharm., 2003, 29:495 21 [22]. Wang Y., Challa P., Epstein D.L., Yuan F. Biomaterials, 2004, 25:4279 22 [23]. Gannu R., Vishnu Y.V., Kishan V., Rao Y.M. Curr Drug Deliv., 2007, 4:69 23 [24]. Madhav N.V.S., Yadav A.P. Int Res J Pharm., 2013, 4:198 24 [25]. Bottenberg P., Cleymaet R., de Muynck C., Remon J.P., Coomans D., Michotte Y., Slop D. J Pharm Pharmacol., 1991, 43:457 25 [26]. Baichwal M.R. Polymer films as drug delivery system. In: Advances in drug delivery systems. Bombay: MSR Foundation; 1985, p. 136 26 [27]. Satheesh Madhav N.V., PratapYadav A. Acta Pharmaceutica Sinica B, 2013, 3:408 27 [28]. Drazie J.H., Woodward G., Calvery H.O. J Pharmacol Exp Ther., 1994, 82:377 28
ORIGINAL_ARTICLE Bio-flexy film formulation for delivery of tiagabine via oro trans-soft palatal route and its in-vitro stability study approach The aim of research work was to formulate bio-flexy films using a novel biopolymer isolated from Rosa polyanthapetals containing tiagabine as a model drug. The soft palate drug delivery helps bypass first-pass metabolism in the liver and pre-systemic elimination in the gastrointestinal tract gets avoided. Tiagabine, anticonvulsant drug possesses t1/2:7-9 hours (low); protein binding: 96%; water solubility: 22mg/L enhances acts as selective GABA reuptake inhibitor. Side effects include abdominal pain, pharyngitis, suicidal thoughts and sudden unexpected death. Rosa polyantha biopolymer used as bio-excipient due to its biodegradability, biocompatibility, non-toxicity, non-reactiveness on soft palatal surface. Physicochemical characterization of biopolymer displayed inbuilt filmability, mucoadhesivity properties. Bio-flexy films were prepared by solvent casting technique. Formulations containing different ratios of nanosized Tiagabine: Rosa polyantha biopolymer (1:0.5, 1:1; 1:3, 1:5, 1:6, 1:10) (FRT1-FRT6) were prepared and compared with nanosized Tiagabine loaded Sodium CMC standard flexy films (FET1-FET6). The percentage yield of Rosa polyantha biopolymer was found to be 2.24±0.01%. Evaluation parameters for formulations revealed Thickness of nanosized Tiagabine loaded bio-flexy films containing Rosa polyantha biopolymer (FRT1-FRT6): 0.027 mm±0.005 to 0.039±0.004 mm, Folding Endurance: 83-130, Surface pH: 7.00±0.04 to 7.00±0.01, Weight Uniformity: 0.008±0.05 to 0.044±0.03, Drug Content Uniformity: 85.6%±0.48 to 94.8%±0.37, Swelling Percentage: 66%±0.2 to 75%±0.1, Percentage Moisture Uptake (PTU): 2.5%±0.14 to 3.8%±0.10. Mucoadhesivity: 90-1440 mins, Mucoretentivity: 110-240 mins. Drug release pattern for formulations FRT1-FRT6 containing Rosa polyantha biopolymer based on the T50% and T80% was found to be FRT5 (1:6) > FRT4 (1:5) > FRT6 (1:10) > FRT1 (1:0.5)> FRT3 (1:3) > FRT2 (1:1). Based on all above mentioned evaluation parameters, FRT5 (containing Tiagabine: Rosa polyantha biopolymer (1:6)) bio-flexy film having R2= 0.9295, Higuchi Matrix as best fit model, follows Fickian Diffusion (Higuchi Matrix) release mechanism, T50%: 7hrs., T80%: 30 hrs. using BITS Software 1.12 was found to be Best formulation. https://www.ajnanomat.com/article_84240_c9664a69386b768abaa66cfd6626ba55.pdf 2019-07-01T11:23:20 2020-07-12T11:23:20 327 349 10.26655/AJNANOMAT.2019.2.3.7 Bio-flexy films nanosized Tiagabine Rosa polyantha biopolymer Soft palatal delivery Sugandha Varshney [email protected] true 1 Faculty of Pharmacy, Dit University, Dehradun, 248001, India Faculty of Pharmacy, Dit University, Dehradun, 248001, India Faculty of Pharmacy, Dit University, Dehradun, 248001, India LEAD_AUTHOR Nookala Venkala Satheesh Madhav [email protected] true 2 Faculty of Pharmacy, Dit University, Dehradun, 248001, India Faculty of Pharmacy, Dit University, Dehradun, 248001, India Faculty of Pharmacy, Dit University, Dehradun, 248001, India AUTHOR [1]. Danzer S. Neuron Journal, 2012, 75:739 1 [2]. Pulman J., Marson A.G., Hutton J.L. Europe PMC., 2014, 2:1 2 [3]. Shakya P., Madhav N.V.S., Shakya A.K. J. Control Release., 2011, 151:2 3 [4]. Kalviainen R. Epilepsia Journal, 2001, 42:45 4 [5]. Sharma Y., Hegde R.V., Venugopal C.K. International Journal of Research in Ayurveda and Pharmacy, 2011, 2:375 5 [6]. Karki S., Kim H., JeongNa S., Shin D., Jo K., Lee J. Asian Journal of Pharmaceutical Sciences.2011, 11:559 6 [7]. Satheesh Madhav N.V., Semwal R. Expert Opinion on Drug Delivery 2012, 9:629 7 [8]. Nilani P., Duraisamy B., Dhamodaran P., Elango K. Journal of Pharmaceutical Sciences and Research, 2010, 2:178 8 [9]. Patil S., Asema S.U.K., Mirza S., International Journal of Chemical Sciences. 2008, 6:413 9 [10]. Satheesh Madhav N.V., Singh K. Journal of Applied Pharmaceutical Research, 2017, 5:21 10 [11]. Patil S, Asema S.U.K. International Journal of Chemical Sciences, 2008,6:413 11 [12]. Madhav N.V.S., Tangri P. International Journal of Therapeutic Applications, 2012, 4:10 12 [13]. Satheesh Madhav N V, Varshney S. Journal of Molecular Medicine and Clinical Applications. Sci. Forschen, 2017, 1.1:1 13
ORIGINAL_ARTICLE Conductometric study on the benzoic acid in water+methanol systems at different solution temperatures This research article explores the results of the ion-solvent interaction with the aid of electrical conductivity law of benzoic acid in triple distilled water and different amounts of methanol at 293 K, 303 K, 313 K, and 323 K. The specific conductance obtained from the conductivity meter was examined using Shedlovsky and Kraus-Bray plots. The limiting molar conductance ) values obtained using the Shedlovsky and Kraus-Bray models. values obtained from theShedlovsky and Kraus-Bray models were found to be in good agreement with each other. The association constant (Ka) values obtained from the Shedlovsky plots, whereas dissociation constant (Kd) values obtained from the Kraus-Bray plots. The thermodynamic parameters such as activation energy (Ea), free energy of adsorption (∆Ga), adsorption enthalpy (∆Ha) and adsorption entropy (∆Sa) values are evaluated in order to study the nature of ion-solvent interaction. The negative ∆Ga values showed the spontaneous ion-pair association process https://www.ajnanomat.com/article_85328_bf5d12740ad0a31736055ecbd63c07c8.pdf 2019-07-01T11:23:20 2020-07-12T11:23:20 350 355 10.26655/AJNANOMAT.2019.2.3.8 Electrical conductivity Shedlovsky model Association constant Adsorption free energy Adsorption enthalpy Narasimha Raghavendra [email protected] true 1 Department of Chemistry, K.L.E. society's P. C. Jabin Science College (Autonomous) Vidyanagar, Hubballi-580031 Department of Chemistry, K.L.E. society's P. C. Jabin Science College (Autonomous) Vidyanagar, Hubballi-580031 Department of Chemistry, K.L.E. society's P. C. Jabin Science College (Autonomous) Vidyanagar, Hubballi-580031 LEAD_AUTHOR [1]. Gomaa E.A., Al-Jahdali B.A.M. Sci. Technol., 2012, 2:66 1 [2]. Covington A.K., Dickinson T. Physical Chemistry of Organic Solvent Systems, Plenum Press, London, 1973; p 1-22 2 [3]. Fuoss R.M., Accascina F. Electrolytic conductance, Interscience, New York, 1959 3 [4]. Robinson RA, Stokes RH. Electroyte Solutions, Wiley, New York, 1968 4 [5]. EL-Khouly A.A., Gomaa E.A., EL-Ashry S. second conf. in Basic science, Assiut University, Assiut, 2000 5 [6]. Shivakumar H.R., Siju N.Asian J. Chem., 2010, 22:5493 6 [7]. Bockris J.O.M., Reddy A.K.N. Modern Electrochemistry 1, Plenum Press: New York, 1970; p 1-34 7 [8]. Esam A.G., Radwa T.R. Asian J. Nano. Mat., 2018,1:81 8 [9]. Nacollas G.H.In: Interactions in Electrolyte Solutions, 1st edn. Elsevier, Amsterdam, 1966 9 [10]. Stokes R.H., Mills R.In: Viscosity of Electrolytes and Related Properties, 1st edn. Pergamon Press, London, 1965 10
ORIGINAL_ARTICLE Novel approaches of treatment via ocusert drug delivery Ocuserts or ophthalmic inserts are “Sterile preparation in the form of solid or semisolid, whose size and shape are specially designed to be applied to the eyes”. The most frequently used dosage forms (ophthalmic solutions and suspensions) are compromised in their effectiveness by several limitations, leading to poor ocular bioavailability. By utilization of the principles of the controlled release as embodied by ocular inserts offers an irritable approach to the problem of prolonging pre-corneal drug residence times. The controlled ocular drug delivery systems increased the efficiency of the drug by enhancing absorption increasing contact time of drug and by reducing drug wastage to the absorption site. Ocuserts were prepared using the solvent casting method. The article discusses about the various structure of the eye, its anatomy with an explanatory diagram. Also, various mechanisms of drug diffusion into an eye with special attention to biological/clinical performances, and potential applications and developments were discussed https://www.ajnanomat.com/article_85710_0dfe8d22269344ab49c91e38b9f8e429.pdf 2019-07-01T11:23:20 2020-07-12T11:23:20 356 366 10.26655/AJNANOMAT.2019.2.3.9 Ocuserts Eye Ocular inserts Sterile Deepika Sharma [email protected] true 1 Faculty of Pharmacy, DIT University, Makkawala P.O. Bhagwantpur, Dehradun, India, 248009 Faculty of Pharmacy, DIT University, Makkawala P.O. Bhagwantpur, Dehradun, India, 248009 Faculty of Pharmacy, DIT University, Makkawala P.O. Bhagwantpur, Dehradun, India, 248009 AUTHOR Shubham Tyagi [email protected] true 2 Faculty of Pharmacy, DIT University, Makkawala P.O. Bhagwantpur, Dehradun, India, 248009 Faculty of Pharmacy, DIT University, Makkawala P.O. Bhagwantpur, Dehradun, India, 248009 Faculty of Pharmacy, DIT University, Makkawala P.O. Bhagwantpur, Dehradun, India, 248009 AUTHOR Bhavna Kumar [email protected] true 3 Faculty of Pharmacy, DIT University, Makkawala P.O. Bhagwantpur, Dehradun, India, 248009 Faculty of Pharmacy, DIT University, Makkawala P.O. Bhagwantpur, Dehradun, India, 248009 Faculty of Pharmacy, DIT University, Makkawala P.O. Bhagwantpur, Dehradun, India, 248009 LEAD_AUTHOR [1]. Chrai S.S., Makoid M.C., Erikson S.P., Robinson J.R. J. Pharm. Sci., 1974, 63:333 1 [2]. Zaki I., Fitzgerald P., Hardy J.G., Wilson C.G. J. Pharm. Pharmacol, 1986, 38:463 2 [3]. Jain M.K., Manque S.A., Deshpande S.G. Controller and Novel Drug Delivery. CBS publication, 2005; p. 82 3 [4]. Sarath C.S., Harsha P., Saraswathi R. Der Pharmacia Letter, 2010, 2:261 4 [5]. Agarwal R., Iezhitsa I., Agarwal P. Drug Deliv, 2016, 23:1075 5 [6]. Del Monte D.W., Kim T. J Cataract Refract Surg., 2011, 37:588 6 [7]. Baylor D.A., Lamb T.D., Yau K.W. J. Physiol., 1979, 88:613
 7 [8]. Dave V., Pareek A., Yadav S. World Journal of Pharmacy and Pharmaceutical Sciences, 2012, 1: 859 8 [9]. Willoughby C.E., Ponzin D., Ferrari S. Clin Exp Ophthalmol, 2010, 38:2 9 [10]. Huang H.S., Schoenwald R.D., Lac J.L. J. Pharm. Sci., 1983, 72:1272 10 [11]. Ahmed I., Gokhale R.D., Shah M.V. J. Pharm. Sci., 1987, 76:583 11 [12]. Eller M.G., Schoenwald R.D., Dixson J.A. J. Pharm. Sci., 1985, 74:155 12 [13]. Tangri P., Khurana S. International Journal of Research in Pharmaceutics and Biomedical Science, 2011, 2:1547 13 [14]. Karthikeyan D., Bhowmick M., Pandey V. Asian J. Pharm., 2008, 2:192 14 [15]. Kaul S., Kumar G., Kothiyal P. International Journal of Pharmaceutical Sciences and Research, 2012, 3:1907 15 [16]. Kumari A., Sharma P., Garg V., Garg G. J Adv Pharm Technol Res., 2010,1:291 16 [17]. Ebtsam M.A., Soha M.K. International Journal of Pharmaceutical Sciences and Research, 2017, 8:915 17 [18]. Shukr M. Arch Pharm Res., 2014, 37:882 18 [19]. Ahad A.H., Sreeramulu J.,Padmaja S.B.ISRN Pharm, 2011:237501 19 [20]. Upadhyaya N., Patidar A., Agrawal S. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2011, 2:411 20 [21]. Sarath C.C., Shirwaikar A., Devi S.A. International Journal of PharmTech Research, 2010, 2:246 21 [22]. Sankar V., Chandrasekharan A.K., Durga S. Acta Pharm Sci., 2006, 48:5 22 [23]. Baeyens V., Kaltsatos V., Boisrame B.J. Control. Release, 1998, 52:215 23 [24]. Thakur R., Swami G. Journal of Drug Delivery & Therapeutics, 2012, 2:18 24 [25]. Salminen L., Urtti A., Kujari H. et al. Greafe’s Arch Clin Exp Ophthalmol, 1983, 221:96 25 [26]. Saettone M.F., Chetoni P., Torraca M.T. Int. J. Pharm., 1989, 51:203 26 [27]. Urtti A., Salminen L., Miinalainen O. Int. J. Pharm., 1985, 23:147 27 [28]. Sendelbeck L., Moore D., Urqhart J. Am. J. Ophthalmol 1975, 80:274 28 [29]. Yamamoto Y., Kaga Y., Yoshikawa T., Moribe A. US Patent, 1992; 5145884 29 [30]. Bloomfield S.E., Miyata T., Dunn M.W. Arch Ophthalmol, 1973, 96:885 30 [31]. Pavan-Langston D., Langston R.H., Geary P.A. Arch Ophthalmol ,1975, 93:1349 31 [32]. Gevariya H., Dharamsi A., Girhepunje K. Pal R. Asian Journal of Pharmaceutics, 2009, 3:314 32