ORIGINAL_ARTICLE Polymer-based Material for Lithium-Ion Batteries: Structure, Material Engineering, Device Performance and Challenges (Review) Batteries are a major technological challenge in this new century as they are a key method to make use of energy efficiently. Nowadays Lithium-ion batteries (LIBs) appeared to be one of the most important energy storage technologies. Today’s Li-ion technology has conquered the portable electronic markets and still on the track of fast development. The success of lithium-ion technology will depend largely on the cost, safety, cycle life, energy, and power, which are in turn determined by the component materials used for its fabrication. Accordingly, this review focuses on the challenges of organic based materials and prospects associated with the electrode materials. Specifically, the issues associated with organic based batteries, advances and prospects are presented. This review aims to summarize the fundamentals of the polymer-based material for lithium-ion batteries (LIBs) and specifically highlight its recent major advancement in material design, challenges, performance and finally its prospects. We anticipate that this Review will inspire further improvement in organic electrolyte materials and the electrode for the battery as energy device storages. Some of these concepts, relying on new ways to prepare electrode materials by the use of eco-efficient processes, on the use of organic rather than inorganic materials in order to overcome environmental issues associated with their use. Organic electrodes are important for solid electrode batteries because they can make device cost-effective, allow flexibility, and can also enable the use of multivalent ions without the problems typically associated with inorganic compounds. https://www.ajnanomat.com/article_75266_bcb34341e933a6a6de21517e6f794b7c.pdf 2019-01-01T11:23:20 2020-07-16T11:23:20 1 26 10.26655/ajnanomat.2019.1.1 Polymer Lithium ion Battery performance Salami Mutiah [email protected] true 1 Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria AUTHOR Hitler Louis [email protected] true 2 Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria. | CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences,Beijing, China. Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria. | CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences,Beijing, China. Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria. | CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences,Beijing, China. LEAD_AUTHOR Amusan Oluwatobi Omotola [email protected] true 3 Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria. Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria. Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria. AUTHOR Saud Uz Zafar [email protected] true 4 CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China AUTHOR Thomas O. Magu true 5 Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria. Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria. Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria. AUTHOR Adejoke T. Hamzat true 6 Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria. Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria. Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria. AUTHOR Amos I. Pigweh true 7 CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China. CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China. CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China. AUTHOR Ozioma U. Akakuru true 8 Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria. | Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang, China. Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria. | Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang, China. Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria. | Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang, China. AUTHOR Aderemi T Adeleye true 9 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P.R. China. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P.R. China. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P.R. China. AUTHOR Benedict Iserom Ita true 10 Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria. Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria. Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria. AUTHOR 1. Vinodkumar,E. Rotem ,M.Ran,E.Gregory,S and Doron,A.(2011). 1 2. Challenges in the development of advanced lithium-ion batteries. Energy environ.sci.,4,3243-3263 2 3. Whittingham ,M.S. Chem. Rev. (2004). 104 , 4271. 3 4. Cabana,J. Monconduit , L. Larcher ,D. Palacin ,M.R.(2010) Advance Materia. 22 , E170 . 4 5. Linden,David and Reddy, Thomas B.(2002). Handbook of batteries.35 5 6. Chang, Z.R. Lv ,H.J. Tang, H.W. Li, H.J. Yuan, X,Z. Wang,H.J.( 2009). Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries. Electrochim. Act 54:4595–99 6 7. Megahed, S. Scrosati, B. (1994). Lithium-ion rechargeable batteries. J. Power Sources51:79–104 7 8 Qi, Y. Harris, S.J.( 2010). In situ observation of strains during lithiation of a graphite electrode. J. Electrochem. Soc. 157: A741–47 8 9. Whittingham, M.S. (2004). Lithium batteries and cathode materials. Chem. Rev.104:4271–301 9 10. Wang, Y. Cao, G.Z. (2008). Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 20:2251–69 10 11. Thackeray, M.M. David, W.I.F., Bruce. P.G. and Goodenough, J.B. (1983). Lithium insertion into manganese spinels. Mater. Res. Bull. 18:461–72 11 12. Manthiram, A. Murugan, A.V. Sarkar, A. and Muraliganth, T. (2008). Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 1:621–38 12 13. Goodenough, J.B.and Kim, Y. (2010). Challenges for rechargeable Li batteries. Chem. Mater. 22:587–603 13 14. Yuan, L.X. Wang, Z.H. Zhang,WX. HuXLChen ,JT. (2011). Development and challenges of cathode material for lithium-ion batteries. Energy Environ. Sci.4:269–84 14 15. Narayanan, S.R. Surampudi, S. Attia, A.I. and Bankston, C.P. (1991). Analysis of redox additive-based overcharge protection for rechargeable lithium batteries. J. Electrochem. Soc. 138:2224–29 15 16. Golovin, M.N. Wilkinson, D.P. Dudley, J.T. Holonko, D. and Woo, S. (1992). Applications of metallocenes in rechargeable lithium batteries for overcharge protection. J. Electrochem. Soc. 139:5–10 16 17. Abraham, K.M. (1993). Directions in secondary lithium battery research-and-development. Electrochim. Acta 38:1233–48 17 18. Winter, M. Brodd, R.J. (2004). What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104:4245–69 18 19. Chan. C.K. Ruffo, R. Hong, S.S and Cui, Y. (2009). Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J. Power Sources 189:1132–40 19 20. Stefan, R.(2014). Lithium-ion laptop battery. Ultrabook batteries. 20 21.Cheng, F. Liang, J. Tao,Z and Chen, J.(2011). Functional material of rechargeable battery. 21 22. Benjamin, F.Gonzalo,R Marcel, W. Mansour, H. Phannarath, P. Virginie, R. and Alexandre ,C.(2017). Properties Guidelines to Design Organic Electrolytes for Lithium-ion Batteries: Environmental Impact, Physicochemical and Electrochemical properties.1;1-2. 22 23. Chagnes, A. Swiatowska,J.(2012) in Lithium Ion Batteries - NewDevelopments, ed. Ilias Belharouak , InTech, Vienna, 1st edn, ch. 6, 145-172. 23 24. Chagnes, A. Swiatowska,J.(2015). in Lithium Process Chemistry: Resources,Extractions, Batteries and Recycling, ed. A. Chagnes, , Elsevier, Amsterdam, 1st edn, ch. 5, 167-189. 24 25. Chagnes,A. Carre,B. Lemordant, D. Willmann, P.(2001) Electrochim. Acta, 2001, 46 1783. 25 26. Chagnes, A . Mialkowski, C. Carre, B. Lemordant, D. Agafonov,V. Willmann,P.(2001) Journal de Physique IV, 11, 10. 26 27. Chagnes, A. Carre, B. Lemordant,D. Willmann,P.(2002) J. Power Sources, 109, 203. 27 28. Geoffroy, I. Chagnes, A. Carre, B. Lemordant, D. Biensan,P. and Herreyre, S.(2001) J. Power Sources, 2002, 112, 191. 28 29. Mialkowski,C. Chagnes,A. Carre,B Willmann, P Lemordant ,D. (2002).J Chem. Thermodyn., 2002, 34, 1845. 29 30. Chagnes, A.Nicolis,S. Carre, B..Willmann,B Lemordant,D.(2003).ChemPhysChem, ,4 559. 30 31. Chagnes,A. Allouchi, H. Carre, B Oudou, G Willmann, P. Lemordant, J. Application Electrochem.33, 589. 31 32. Chagnes,A . Carre, B. Willmann, P. Dedryvere, R. Gonbeau,D Lemordant, D.(2003).Journal Electrochem. Soc., 159, A1255. 32 33. Chagnes,A. Diaw, M.. Carre,B . Willmann,P Lemordant, Journal Power Sources, 2005, 145, 82. 33 34. Diaw,M. Chagnes, A. Carre,B. Willmann, P Lemordant,D.(2005) Journal of Power Sources, 146, 682. 34 35. Gzara,L. Chagnes,A. Carre,B. Dhahbi,M. Lemordant,D. (2006)Journal of Power Sources, 156, 634. 35 36. Sun, X.G. Angell,C.G.(2005) Electrochem. Commun., 7, 261. 36 37. Hofmann, A. Schulz,M. Indris, S. Heinzmann,R. Hanemann,T.(2014) Electrochim. Acta, 147, 704. 37 38. Chagnes,A.(2015). in Lithium Process Chemistry: Resources,Extractions, Batteries and Recycling, ed. A. Chagnes, J. Swiatowska, Elsevier, Amsterdam, 1st edn, ch. 2, 38 41-80. 39 39. Hawkins, T.R.Gausen,O.M. Stromman, A.H (2012).International journal of Life CycleAssess. 17, 997. 40 40. Bauer,C Hofer,J H. Althaus,J Del Duce,A and Simons, A.(2015).Applied Energy. 157, 871. 41 41. Liang,Y. Tao,Z. and Chen,J.(2012). Adv. Energy Mater., 2, 742 . 42 42. Milczarek, G. and Inganas, O. (2012)Science, 335, 1468. 43 43. Song,Z. and Zhou,H.(2013) Energy Environ. Sci., 6, 2280. 44 44. Han,X. Qing,G. Sun,J. and Sun,T.(2012) Angew. Chem. Inter. Ed., 51, 5147 . 45 45. Liang,Y. Zhang,P and Chen,J.(2013). Chem. Sci., 4, 1330 (. 46 46. Lee,M. Hong,J. Seo, D.H. Nam,D.H Nam,D.T Kang,K and Park,C.B.(2013) Angew. 47 Chem. Int. Ed., 52, 8322 . 48 47. Hong,J. Lee,M. Lee,B. Seo, D Park,C.B and Kang,K.(2014) Nat. Commun., 5, 5335 . 49 48. Williams,D.L. Byrne,J.J and Driscoll,J.S.(1969). J. Electrochem. Soc., 116, 2 . 50 49. Chen, H. Armand ,M. Demailly, G. Dolhem, F. Poizot, P. and Tarascon, J.M.(2008).ChemSusChem, 1, 348 . 51 50. Poizot.P and Dolhem,F.(2011). Energy Environ. Sci., 4, 2003 . 52 51. Nigrey, P.J Maclnnes, D. Nairns, D.P. and MacDiarmid,A.G.(1981). J. Electrochem. Soc., 128, 1651 . 53 52. Shacklette, L.W. Toth, J.E. Murthy, N.S. and . Baughman, R.H.(1985). J. Electrochem Soc., 132, 1529 (1985). 54 53. Mermilliod, N. Tanguy, J. and Petiot,F.(1986). J. Electrochem. Soc., 133, 1073 . 55 54. Gospodinova, N. and. Terlemezyan, L.(1998) Prog. Polym. Sci., 23, 1443 . 56 55. Zhou, M. Qian, J Ai, X. and Yang, H.(2011). Adv. Mater., 23, 4913 . 57 56. Visco, S.J and De Jonghe, L.C.(1988) J. Electrochem. Soc., 135, 2905 . 58 57. Liu, M. Visco, S.J. and De Jonghe,L.C.(1990). J. Electrochem. Soc., 137, 750 . 59 58. Oyama, N. Tatsuma, T. Sato, T. and Sotomura, T.(1995) Nature, 373, 598. 60 59. Naoi, K. Kawase, K.I. Mori, M. and Komiyama, M. J. Electrochem 61 60. Oyama, N. Pope, J.M. and Sotomura, T.(1997). J. Electrochem. Soc., 144, L47 (1997). 62 61. Nakahara, K. Iwasa, S. Satoh, M. Morioka, Y. Iriyama, J. Suguro, M. and Hasegawa, E.(2002). Chem. Phys. Lett., 359, 351. 63 62. Nishide, H. Iwasa, S. Pu, Y.J. Suga, T. Nakahara, K. and Satoh, M.(2004). Electrochim.Acta, 50, 827 . 64 63. Suga, T. Konishi, H. and Nishide, H.(2007).Chem. Commun., 17, 1730 . 65 64. Oyaizu, K. Suga, T. oshimura, K.Y. and Nishide, H.(2008). Macromolecules, 41, 6646. 66 65. Choi, W. Ohtani, S. Oyaizu, K. Nishide, H. and Geckeler, K.E. (2011). Adv. Mater., 23, 67 4440 . 68 66. Tobishima, S.I. Yamaki, J.I. and Yamaji, A. (1984). J. Electrochem. Soc., 131, 57 . 69 67. Foos, J.S. Erker, S.M. and Rembetsy, L.M. (1986). J. Electrochem. Soc., 133, 836 . 70 68. H¨aringer, D. Nov´ak, P. Haas, O. Piro, B.and Pham, M.C. (1999). J. Electrochem. Soc., 146, 2393 . 71 69. Fedele, L. Sauvage, F. Bois, J. Tarascon, J.M. and Becuwe, M. (2014). J. Electrochem. Soc.,161, A46 . 72 70. Chen, D. Avestro, A.J. Chen, Z. Sun, J. Wang, S. Xiao, M. Erno, Z. Algaradah, M.M. Nassar, M.S. Amine, K. Meng, Y.and Stoddart, J.F. (2015). Adv. Mater.,27, 2907 . 73 71. Han, X. Chang, C. Yuan, L. Sun, T.and Sun, J. (2007). Adv. Mater., 19, 1616 . 74 72. Song, Z. Zhan, H. and Zhou, Y. Angew.(2010). Chem. Int. Ed., 49, 8444 . 75 73. Nokami, T. Matsuo, T. Inatomi, Y. Hojo, N. Tsukagoshi, T. Yoshizawa, H. Shimizu, A. Kuramoto, H. Komae, K . Tsuyama, H. and Yoshida, J. (2012) Journal American. Chemical society 134, 19694 (2012). 76 74. Liang, Y. Chen, Z. Jing, Y. Rong, Y. Facchetti, A. and Yao, Y.(2015) J. Am. Chem. Soc.,137, 4956 . 77 75. Xiang, J. Chang, C. Li, M. Wu, S. Yuan, L. and Sun, J. (2008). Cryst. Growth Des., 8, 280. 78 76. Armand, M.Grugeon, S. Vezin, H. Laruelle, S. Ribiere, P. Poizot, P. and Tarascon, J.M. (2009). Nat. Mater., 8, 120 . 79 77. Chen, H. Armand, M. Courty, M. Jiang, M. Grey, C.P. Dolhem, F. Tarascon,J.M. 80 and Poizot, P.(2009). J. Am. Chem. Soc., 131, 8984 . 81 78. Chen, H. Poizot, P. Dolhem, F. Basir, N.I. Mentr´e, O. and Tarascon, J.M.(2009). Electrochem. Solid-State Lett., 12, A102 . 82 79. Wang, S. Wang, L. Zhang, K. Zhu, K. Tao, Z. and Chen, J.(2013). Nano Lett., 13, 4404. 83 80. Luo, C. Huang, R. Kevorkyants, R. Pavanello, M. He, H. and Wang, C. (2014). Nano Lett., 14, 1596. 84 81. Hanyu , Y.and Honma, I.(2012). Sci. Rep., 2, 453 . 85 82. Huang, W. Zhu, Z. Wang, L. Wang, S. Li, H. Tao, Z. Shi, J. Guan,L. and Chen, J.(2013). Angew. Chem. Int. Ed., 52, 9162 (2013). Journal of The Electrochemical Society, 162 (14) A2393-A2405 (2015) A2405 86 83. Hanyu, Y. Ganbe, Y. and Honma, I.(2013). J. Power Sources, 221, 186 . 87 84. Zhu, Z.Hong, M. Guo, D. Shi, J. Tao, Z. and Chen, J.( 2014). J. Am. Chem. Soc., 136, 16461. 88 85. Genorio, B. Pirnat, K. Cerc-Korosec, R. Dominko, R. and Gaberscek, M. (2010).Angew. 89 Chem. Int. Ed., 49, 7222 . 90 86. Pirnat, K. Dominko, R. Cerc-Korosec, R. Mali, G. Genorio, B. and Gaberscek, M.(2012).J. Power Sources, 199, 308 . 91 87. Nov´ak, P. M¨uller, K. Santhanam, K.S.V. and Haas, O.(1997). Chem. Rev., 97, 207 . 92 88. Janoschka, T. Hager, M.D.and Schubert, U.S. (2012). Adv. Mater., 24, 6397 . 93 89. Gracia, R. and Mecerreyes, D.(2013). Polym. Chem., 4, 2206 . 94 90. H¨aupler, B. Wild, A.and Schubert, U.S.(2015). Adv. Energy Mater., 5, 1402034 . 95 91. Liang, Y. Tao, Z. Chen, J (2012). Adv. Energy Mater. 2, 742 – 769. 96 92. Song, Z. Zhou, H.(2013).Energy Environ. Sci. 6, 2280 – 2301. 97 93. Chen, H. Armand, M. Demailly, D. Dolhem, F.. Poizot, M.. Tarascon, J.-M.(2008). ChemSusChem 1, 348 – 355. 98 94. Armand, M. Grugeon, S. Vezin, HLaruelle, . S. P. Ribi_re, . P Poizot, . P.. Tarascon, J.-M. (2009).Nat. Mater. 8, 120 – 125. 99 95. Song, Z. Zhan, H. Zhou, Y. (2009). Chem. Commun. 448 – 450. 100 96. Song, Z. Qian, Y. Liu, X. Zhang, T. Zhu, Y. Yu, H. Otani, M. Zhou, H.(2014). Energy Environ. Sci. 7, 4077 – 4086. 101 97. Song, Z. Qian, Y. Zhang, T. Otani, M. Zhou, H. (2015).Adv. Sci. , 1500124. 102 98. Nokami, T. Matsuo, T. Inatomi, Y. Hojo, N.Tsukagoshi, T. Yoshizawa, H. Shimizu, A. Kuramoto, H. Komae, K. Tsuyama, H. Yoshida, J.-i. (2012). J. Am. Chem. Soc. 134, 19694 – 19700. 103 99. Huang, W. Zhu, Z. Wang, L. Wang, S. Li, H.Tao, Z. Shi, J. Guan, L. Chen, J. (2013).Angew. Chem. Int. Ed. 52, 9162 – 9166; Angew. Chem. 2013, 125, 9332 – 9336. 104 100. Zhao, L. Zhao, J. Hu Y.-S., Li, H. Zhou, Z. Armand, M. Chen, L.(2012).Adv. Energy Mater., 2, 962 – 965. 105 101. Wang, H.-g Yuan, S. Ma, D.-lHuang, . X.-l. Meng, . F.-l Zhang, X.-b. (2014). Adv. Energy Mater. 4, 1301651. 106 102. Wang, S. Wang, L. Zhu, Z. Hu, Z. Zhao, Q. Chen,J. (2014). Angew. Chem. Int. Ed. 2014, 53, 5892 – 5896; Angew. Chem. 126,6002 – 6006. 107 103. Sano, H. Senoh, H. Yao, M. Sakaebe, H. Kiyobayashi, T.(2012). Chem.Lett. 41, 1594 – 1596. 108 104. Snook, G.A. Kao, P. Best, A.S. (2011). J. Power Sources 196, 1–12. 109 105. Wu, H . Shevlin, . S. A. Meng, Q.Guo, W. Meng, Y. Lu, K.Wei, Z. Guo, Z. (2014).Adv. Mater. 26, 3338 – 3343. 110 106. Choi, W. Harada, D. Oyaizu, K. Nishide, H.(2011). J. Am. Chem. Soc. 133, 19839 – 19843. 111 107. Qin, H. Song, Z. PZhan, . H. Zhou, Y. H. (2014) . J. Power Sources 249, 367 – 372. 112 108. Brushett, F. RVaughey, . J. T. . Jansen, A. N .(2012).Adv. Energy Mater.2, 1390 – 1396. 113 109. Wang, S. Wang, L Zhang, . K. Zhu, Z. Tao, Z. (2013).J. Chen, Nano Lett. 13, 4404 – 4409. 114 110. Upler, B. H Wild A. Schubert, U. S. (2015). Adv. Energy Mater. 5, 1402034. 115 111. Yao, M. Senoh, HYamazaki, . S.-i. Siroma, Z. Sakai, T. Yasuda, K.( 2010). J. Power Sources 195, 8336 – 8340. 116 112. Senoh, H. Yao, M. Sakaebe, H. Yasuda, K. Siroma, Z.(2011). Electrochim. Acta 56, 10145 – 10150. 117 113. Hanyu, Y. Ganbe, Y. Honma, I. (2013). J. Power Sources 221, 186 –190. 118 114. Lee, M. Hong, J. Kim, H. Lim, H.-D. Cho, S. B. Kang, K. Park, C. B. (2014). Adv. Mater. 26, 2558 – 2565. 119 115. Zhang, K. Guo, C. Zhao, Q. Niu, Z. (2015).J. Chen, Adv. Sci. 2, 1500018. 120 116. Vlad, A. Arnould, K. Ernould, B. Sieuw, L. Rolland, J. Gohy, J.-F. (2015). J. Mater. Chem. A 3, 11189 – 11193. 121 117. Zhou, Y. Wang, B. Liu, C.Han, N. Xu, X. Zhao, F.Fan, J. Li, Y.(2015). Nano Energy 15, 654 – 661. 122 118. Yamamoto, T. Etori, H. (1995). Macromolecules 28, 3371 – 3379. 123 119. Yao, M. Yamazaki, S.-i. Senoh, H. Sakai, T. Kiyobayashi,T. (2012).Mater. Sci. Eng. B 17, 483 – 487. 124
ORIGINAL_ARTICLE Facile Preparation of Novel Zinc Oxide Nano Sheets and Study of Its Optical Properties The zinc oxide nano sheets were prepared by zinc sulfate and sodium hydroxide via precipitated method and, then, calcinated at 300 oC. In order to have a reliable characterization of the synthesized ZnO nanosheets, FTIR, XRD, FESEM, XRF, TGA and Raman techniques were applied. The phase and purity of zinc oxide nanosheets were confirmed by XRD and XRF, respectively. FESEM results showed the morphology of zinc oxide and revealed that the size of the prepared powder is in the range of nanometer. TGA analysis revealed that there are two endothermic reactions which have occurred at 35-200oC and 300 - 400oC temperatures. Optical spectra indicated that the band gap of the prepared nanosheets transmitted a red shift. https://www.ajnanomat.com/article_75244_64471746e1887d547d94463473ee8b17.pdf 2019-01-01T11:23:20 2020-07-16T11:23:20 27 36 10.26655/ajnanomat.2019.1.2 Zinc oxide Synthesis Optical properties Nano Sheet Parvin Gharbani [email protected] true 1 Department of Chemical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran Department of Chemical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran Department of Chemical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran LEAD_AUTHOR Amir Mehalizadeh [email protected] true 2 Department of Chemical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran Department of Chemical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran Department of Chemical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran AUTHOR urablu S, Farahmandjou M, Firoozabadi TP (2015) J Sci I R Iran 26: 281 - 285. 1 Lee SY, Shim ES, Kang HS, Pang SS (2005) Thin Solid Films 43: 731–34. 2 Brida D, Fortunato E, Ferreira I, Aguas H, Martins R (2002) J Non-Cryst Solids 299: 1272–1276. 3 Suchea M, Christoulakis S, Moschovis K, Katsarakis N, Kiriakidis G (2006) Thin Solid Films 515: 551–554. 4 E.M. Flores, C.W. Raubach, R. Gouvea, E. Longo, S. Cava, M.L. Moreira, (2016) Mater Chem Phys 173: 347-354. 5 Kumar SS, Venkateswarlu P, Vanka Ranga Rao VR, Rao GN (2013) Int Nano Lett 3: 30-35. 6 Ristiac M, Musiac S, Ivanda M, Popoviac S (2005) J Alloys Compd 397: L1–L4. 7 Singh O, Kohli N, Singh RC (2013) Sens Actuators B 178: 149–154. 8 Khorsand Z, Abid A, Majid WH, Wang HZ, Yousefi R, Golsheikh M, Ren ZF (2013) Ultrason Sonochem 20: 395–400. 9 Ni YH, Wei XW, Hong JM, Ye Y (2005) Mater Sci Eng B Solid State Mater AdvTechnol 121: 42–47. 10 Chang S, Yoon SO,.Park HJ, Sakai A (2002) Mater Lett 53: 432–436. 11 Wu JJ, SC Liu (2002) Adv Mater 14: 215–218 12 Kooti M, Nagdhi Sedish A (2013) J Chem 2013: 1-4. 13 Sadraei RA (2016) Simpl J Chem 5: 45-49. 14 Chen CC, Liu P, Lu C (2008) Chem Eng J 144: 509–513. 15 Suchanek WL (2009) J Cryst Growth 312: 100-108 16 Rodrigues-Paez J, Caballero AC, Villegas M, Moure C, Duran P, Fernandz JF (2001) Eur Ceram Soc 21: 925–930. 17 Oprea C, Ciupina V, Prodan G (2008) Rom Journ Phys 53: 223–230. 18 Khan A (2010) J Pak Mater Soc 4: 5-9. 19 Soosen Samuel M, Jiji K, Chandran A, George KC (2010) Indian J Pure Ap Phy 48: 703-708. 20 Jun H, Im B, Kim JY, Im YO, Jang JW, Kim ES, Kim JY, Kang HJ, Hong SJ, Lee JS(2012) Energy Environ Sci 5: 6375-6382. 21
ORIGINAL_ARTICLE Embedded Ag NPs in Cysteine-Poly (acrylic acid) Hydrogel with Antibacterial Activity In this research,Ag NPs were loaded on cysteine modified poly(acrylic acid) (PAA) hydrogel. Obtainedcysteine-hydrogel (Chydrogel) having different functional groups could stabilize Ag NPs better than un-modified hydrogel due to the presence of disulfid bondings. First, obtained PAA hydrogel from radical polymerization was conjugated with cysteine-hydrochloride (Cys) through amidation reaction and then was used as a substrate and stabilization reagent for Ag ions. Ag ions were reduced on Chydrogel in the presence ofNaBH4 as reducing reagent. The resultant nanocomposite was well characterized by using UV–vis, FT-IR, XRD and SEM techniques. Furthermore, the resultant Ag NPs on the surface of Chydrogel showedhigh antibacterial behavior against Gram-negative E. coliand Gram-positive S. aureusdue to the high reaction of thiol-functions with the outer cell surface. https://www.ajnanomat.com/article_73762_575158cc3cf3fcd85ba3df0bc973b90a.pdf 2019-01-01T11:23:20 2020-07-16T11:23:20 37 48 10.26655/ajnanomat.2019.1.3 hydrogels Composites antibacterial inorganic materials Ag NPs Soghra Fathalipour [email protected] true 1 Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran. Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran. Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran. LEAD_AUTHOR Mahdiye Ghanbarizadeh [email protected] true 2 Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran. Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran. Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran. AUTHOR 1. Adhikari B, Banerjee A (2010) Chem. Eur. J. 16:13698-13705. 1 2. Zhu J, Aruna S, Koltypin Y, Gedanken A (2000) Chem. Mat. 12:143-147. 2 3. Shervani Z, Ikushima Y, Sato M, Kawanami H, Hakuta Y, Yokoyama T, Nagase T, Kuneida H, Aramaki K (2008) Colloid. Polym. Sci. 286:403-410. 3 4. Chen C, Wang L, Yu H, Wang J, Zhou J, Tan Q, Deng L (2007) Nanotechnology 18:115612. 4 5. Zhu J, Liu S, Palchik O, Koltypin Y, Gedanken A (2000) Langmuir 16:6396-6399. 5 6. Abdelwahed W, Degobert G, Stainmesse S, Fessi H (2006) Adv. Drug. Deliv. Rev 58:1688-1713. 6 7. Wahab MA, Islam N, Hoque ME, Young DJ (2018) Curr.Anal. Chem. 14: 198-202 7 8. Philip D (2009) Spectrochim. Acta. A Mol. Biomol. Spectrosc. I 73: 374-381. 8 9. Perdikaki A, Galeou A, Pilatos G, Karatasios I, Kanellopoulos NK, Prombona A, Karanikolos GN (2016) ACS. Appl. Mater. Interfaces. 8:27498-27510. 9 10. Li W-R, Xie X-B, Shi Q-S, Zeng H-Y, You-Sheng O-Y, Chen Y-B (2010) Appl. Microbiol. Biotechnol. 85:1115-1122. 10 11. Bajpai S, Mohan YM, Bajpai M, Tankhiwale R, Thomas V (2007) J.nanosci.nanotechno. 7:2994-3010 11 12. Thomas V, Namdeo M, Murali Mohan Y, Bajpai S, Bajpai M (2007) J. Macromol. Sci. Pure. Appl. Chem. 45:107-119 12 13. Hebeish A, Hashem M, El-Hady MA, Sharaf S (2013) Carbohydr.Polym. 92:407-413 13 14. Fathalipour S, Pourbeyram S, Sharafian A, Tanomand A, Azam P (2017) Mater. Sci. Eng. C. 75:742-751 14 15. Fathalipour S, Abdi E (2016) Synth Met. 221:159-168 15 16. Fathalipour S, Mardi M (2017) Mater. Sci. Eng. C. 79:55-65 16 17. Mohan YM, Vimala K, Thomas V, Varaprasad K, Sreedhar B, Bajpai S, Raju KM (2010) J. Colloid. Interface. Sci. 342:73-82 17 18. Kamoun EA, Kenawy E-RS, Chen X (2017) J. Adv. Res. 8:217-233 18 19. Peppas NA, Khare AR (1993) 11:1-35 19 20. Sun Z, Lv F, Cao L, Liu L, Zhang Y, Lu Z (2015) Angew. Chem. Int. Ed 54:7944-7948 20 21. Basit H, Pal A, Sen S, Bhattacharya S (2008) Chem. Eur. J. 14:6534-6545 21 22. Murthy PK, Mohan YM, Varaprasad K, Sreedhar B, Raju KM (2008) Colloid. Interface. Sci. 318:217-224 22 23. Mohan YM, Lee K, Premkumar T, Geckeler KE (2007) Polymer 48:158-164 23 24. Varaprasad K, Mohan YM, Ravindra S, Reddy NN, Vimala K, Monika K, Sreedhar B, Raju KM (2010) J. Appl. Polym. Sci. 115:1199-1207 24 25. Fullenkamp DE, Rivera JG, Gong Y-k, Lau KA, He L, Varshney R, Messersmith PB (2012) Biomaterials 33:3783-3791 25 26. Sahraei R, Ghaemy M (2017) Carbohydrate polymers 157:823-833 26 27. Mulvaney P (1996) Langmuir 12:788-800 27 28. Vetter A, Reinisch A, Strunk D, Kremser C, Hahn H, Huck C, Ostermann T, Leithner K, Bernkop-Schnürch A (2011) J. drug. target. 19:562-572 28 29. Babu VR, Kim C, Kim S, Ahn C, Lee Y-I (2010) Carbohydrate Polymers 81:196-202 29 30. Chandra Babu A, Prabhakar M, Suresh Babu A, Mallikarjuna B, Subha M, Chowdoji Rao K (2013) Int. J. Carbohydr. Chem. 2013:1-8. 30 31. Varaprasad K, Vimala K, Ravindra S, Reddy NN, Raju KM (2011) Polym. Plast. Technol. Eng. 50:1199-1207 31 32. Pourjavadi A, Ghasemzadeh H, Mojahedi F (2009) J. Appl. Polym. Sci. 113:3442-3449 32 33. Wu J, Lin J, Zhou M, Wei C (2000) Macromol Rapid. Commun. 21:1032-1034. 33 34. Toda M, Stefan T, Simon S, Balasz I, Daraban L (2014) Turk. J. Phys. 38:261-267 34 35. Mao H, Bell P, Shaner Jt, Steinberg D (1978) J. Appl. Phys. 49:3276-3283 35 36. Massoumi B, Fathalipour S (2014) Polym.Sci. Ser A 56:373-382 36 37. Sahu D, Acharya B, Panda A (2011) Ultrason. sonochem. 18:601-607 37 38. Arndt K, Richter A, Ludwig S, Zimmermann J, Kressler J, Kuckling D, Adler H (1999) Acta. Polym. 50:383-390 38 39. Choudhury A (2009) Actuator B.Chem. 138:318-325 39 40. Sharma VK, Yngard RA, Lin Y (2009) Adv. Colloid. Interface. Sci. 145:83-96. 40
ORIGINAL_ARTICLE Host-guest interaction in chitosan– MX (3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone) complexes in water solution: Density Functional Study The present study is an attempt to provide an insight into the stability, in terms of interaction energy and thermodynamic parameter, and reactivity, quantified by reactivity descriptors, of the chitosan-MX and its analogous (EMX and ZMX) system. In this system a component is, MX (3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone) a mutagenic halogenated disinfection by products which present in drinking water. And, chitosan is an eco-friendly nano-adsorbent to remove oils, grease, heavy metals and the fine particulate matter from water solution. Electronic and structural properties of chitosan during functionalization by metal were studied by density functional theory (DFT) calculations. Isolated and functionalized chitosan were optimized and their properties were evaluated. The results indicated that the properties of linking sites detect the most significant effects of functionalization process. Degradation efficiency of MX and its analogous in water solvent and also the possibility of absorption of MX by chitosan nanoparticles in aqueous solution were studied via different level of theory. https://www.ajnanomat.com/article_75234_f855570545c3164d7d44107a9f55621d.pdf 2019-01-01T11:23:20 2020-07-16T11:23:20 49 65 10.26655/ajnanomat.2019.1.4 Halogenated furanone (MX) MX analogous Disinfection Byproducts Chitosan Density functional theory Fatemeh Houshmand [email protected] true 1 Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531 Tehran, Iran. | Department of Laboratory, Water and Wastewater quality control office, TPWW.Co. Tehran, Iran. Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531 Tehran, Iran. | Department of Laboratory, Water and Wastewater quality control office, TPWW.Co. Tehran, Iran. Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531 Tehran, Iran. | Department of Laboratory, Water and Wastewater quality control office, TPWW.Co. Tehran, Iran. LEAD_AUTHOR Hamide Neckoudaria true 2 Department of Laboratory, Water and Wastewater quality control office, TPWW.Co. Tehran, Iran. Department of Laboratory, Water and Wastewater quality control office, TPWW.Co. Tehran, Iran. Department of Laboratory, Water and Wastewater quality control office, TPWW.Co. Tehran, Iran. AUTHOR Majid Baghdadi [email protected] true 3 Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran AUTHOR 1. G. Brunborg, J.A. Holme, E.J. Søderlund, and E. Dybing, (1990) Prog. Clin. Biol. Res., 340:43 . 1 2. G. Brunborg, J.A. Holme, E.J. Søderlund, J.K. Hongslo, T. Vartiainen, S. Lötjönen, and G. Becher, (1991) Mutat. Res. Toxicol., 260:55–64 . 2 3. U.K. COM, (n.d.) . 3 4. F.B. Daniel, M. Robinson, G.R. Olson, J.A. Stober, and N.P. Page, (1994) Journal‐American Water Work. Assoc., 86:103–111 . 4 5. K. Heiskanen, P. Lindström-Seppö, L. Haataja, S.-L. Vaittinen, T. Vartiainen, and H. Komulainen, (1995) Toxicology, 100:121–128 . 5 6. B. Holmbom, R.H. Voss, R.D. Mortimer, and A. Wong, (1984) Environ. Sci. Technol., 18:333–337 . 6 7. H. Komulainen, S.-L. Vaittinen, T. Vartiainen, J. Tuomisto, V.-M. Kosma, E. Kaliste-Korhonen, S. Lötjönen, and R. K. Tuominen, (1997) J. Natl. Cancer Inst., 89:848–856 . 7 8. H. Horth, J.K. Fawell, C.P. James, and W.F. Young, The fate of the chlorination-derived mutagen MX in vivo, in: Rep. No. FR025 Found. Water Res., Alien House Marlow Bucks, England, (1991). 8 9. Z. Huixian, L. Junhe, C. Zhuo, Y. Chengyong, Z. Jinqi, and Z. Wen, (2000) Water Res., 34:225–229 . 9 10. J. Hemming, B. Holmbom, M. Reunanen, and L. Kronberg, (1986) Chemosphere, 15:549–556 . 10 11. H. Huuskonen, R. Venäläinen, and H. Komulainen, (2003) Birth Defects Res. Part B Dev. Reprod. Toxicol., 68:172–179 . 11 12. B. Li, C.-L. Shan, Q. Zhou, Y. Fang, Y.-L. Wang, F. Xu, L.-R. Han, M. Ibrahim, L.-B. Guo, and G.-L. Xie, (2013) Mar. Drugs, 11:1534–1552 . 12 13. E. Rincon, F. Zuloaga, and E. Chamorro, (2013) J. Mol. Model., 19:2573–2582 . 13 14. J.R. Meier, A.B. DeAngelo, F.B. Daniel, K.M. Schenck, J.U. Doerger, L.W. Chang, F.C. Kopfler, M. Robinson, and H.P. Ringhand, Genotoxic and carcinogenic properties of chlorinated furanones: important by-products of water chlorination, in: Genet. Toxicol. Complex Mix., Springer, (1990), pp. 185–195. 14 15. F. Edition, (2011) WHO Chron., 38:104–108 . 15 16. M. Rinaudo, (2006) Prog. Polym. Sci., 31:603–632 . 16 17. J. Zhang, W. Xia, P. Liu, Q. Cheng, T. Tahi, W. Gu, and B. Li, (2010) Mar. Drugs, 8:1962–1987 . 17 18. I. Younes and M. Rinaudo, (2015) Mar. Drugs, 13:1133–1174 . 18 19. B. Bellich, I. D’Agostino, S. Semeraro, A. Gamini, and A. Cesàro, (2016) Mar. Drugs, 14:99 . 19 20. C. Cook and V.G. Gude, Characteristics of Chitosan Nanoparticles for Water and Wastewater Treatment: Chitosan for Water Treatment, in: Adv. Nanomater. Water Eng. Treat. Hydraul., IGI Global, (2017), pp. 223–261. 20 21. W. Chooaksorn and R. Nitisoravut, Heavy metal removal from aqueous solutions by chitosan coated ceramic membrane, in: Proc. 4th Int. Conf. Informatics, Environ. Energy Appl. Pattaya, Thail., (2015), pp. 28–29. 21 22. W.-L. Du, S.-S. Niu, Y.-L. Xu, Z.-R. Xu, and C.-L. Fan, (2009) Carbohydr. Polym., 75:385–389 . 22 23. A.M. De Campos, A. Sánchez, and M.J. Alonso, (2001) Int. J. Pharm., 224:159–168 . 23 24. T. Kean, S. Roth, and M. Thanou, (2005) J. Control. Release, 103:643–653 . 24 25. M. Prabaharan and A. Tiwari, (2010) Chitin, Chitosan, Oligosaccharides Their Deriv. Biol. Act. Appl., 173 . 25 26. S. Grimme, (2010) J. Chem. Phys., 132:154104 . 26 27. E. Torres and G.A. DiLabio, (2012) J. Phys. Chem. Lett., 3:1738–1744 . 27 28. M. Soniat, D.M. Rogers, and S.B. Rempe, (2015) J. Chem. Theory Comput., 11:2958–2967 . 28 29. G.A. DiLabio, E.R. Johnson, and A. Otero-de-la-Roza, (2013) Phys. Chem. Chem. Phys., 15:12821–12828 . 29 30. A.D. Becke, (1993) J. Chem. Phys., 98:5648–5652 . 30 31. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, and I. Dabo, (2009) J. Phys. Condens. Matter, 21:395502 . 31 32. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, (2002) J. Phys. Condens. Matter, 14:2745 . 32 33. G. Henkelman and H. Jónsson, (2000) J. Chem. Phys., 113:9978–9985 . 33 34. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, and S. Su, (1993) J. Comput. Chem., 14:1347–1363 . 34 35. A.D. Becke, (1988) Phys. Rev. A, 38:3098 . 35 36. C. Lee, W. Yang, and R.G. Parr, (1988) Phys. Rev. B, 37:785 . 36 37. S. Plimpton, (1995) J. Comput. Phys., 117:1–19 . 37 38. M. Deserno and C. Holm, (1998) J. Chem. Phys., 109:7694–7701 . 38 39. R.G. Parr and R.G. Pearson, (1983) J. Am. Chem. Soc., 105:7512–7516 . 39 40. R.G. Parr, R.A. Donnelly, M. Levy, and W.E. Palke, (1978) J. Chem. Phys., 68:3801–3807 . 40 41. S.D. Richardson, M.J. Plewa, E.D. Wagner, R. Schoeny, and D.M. DeMarini, (2007) Mutat. Res. Mutat. Res., 636:178–242 . 41 42. N. Suzuki and J. Nakanishi, (1995) Chemosphere, 30:1557–1564 . 42 43. M. Gonsior, P. Schmitt-Kopplin, H. Stavklint, S.D. Richardson, N. Hertkorn, and D. Bastviken, (2014) Environ. Sci. Technol., 48:12714–12722 . 43 44. P. Andrzejewski and J. Nawrocki, (2005) Glob. NEST J., 7:27–42 . 44 45. X. Qian, X. Gu, and R. Yang, (2015) J. Phys. Chem. C, 119:28300–28308 . 45 46. I. Onoka, A. Pogrebnoi, and T. Pogrebnaya, (2014) Int. J. Mater. Sci. Appl., 3:121–128 . 46 47. S. Mao, W. Sun, and T. Kissel, (2010) Adv. Drug Deliv. Rev., 62:12–27 . 47 48. T. Koopmans, (1934) Physica, 1:104–113 . 48 49. R.G. Parr, L. v Szentpaly, and S. Liu, (1999) J. Am. Chem. Soc., 121:1922–1924 . 49 50. P. Geerlings, F. De Proft, and W. Langenaeker, (2003) Chem. Rev., 103:1793–1874 . 50
ORIGINAL_ARTICLE Curcumin-hybrid Nanoparticles in Drug Delivery System (Review) Extensive studies on curcumin has improved that it has certain therapeutic role for different kinds of diseases such as cancer. Regardless of its positive features, its application is hampered by its low water solubility, bioavailability, and low cellular uptake. During last year’s several ways have been developed to protect curcumin from degradation and increase its capability to targeting unhealthy cells. The progress in nanotechnology encouraged nanotechnologists to formulate nanoparticles encapsulating curcumin, such as polymer nanoparticles, solid nanoparticles, liposome/lipid nanoparticles, micelles, dendrimers, polymer conjugates, etc. to enhance sustained release of curcumin at target cells and to improve curcumin bioavailability. Nowadays newer formulations of nanoparticles as called Hybrid nanoparticles are designed in order to efficient and specific targeting of curcumin that result in improved therapeutic efficacy of curcumin with high biocompatibility with the aid of aptamers, folic acid, chitosan coated halloysite loaded with curcumin-Au hybrid nanoparticle and so on. This review describes a number of hybrid nanoparticles formulated and their efficacy in specific targeting to cancerous cells. https://www.ajnanomat.com/article_79350_ab1397dcb9ea1dfb47f4db92ec6bbbc8.pdf 2019-01-01T11:23:20 2020-07-16T11:23:20 66 91 10.26655/ajnanomat.2019.1.5 curcumin hybrid nanoparticles Drug delivery system Somayeh Deljoo [email protected] true 1 Department of plant sciences, Faculty of natural sciences, University of Tabriz, Tabriz, Iran Department of plant sciences, Faculty of natural sciences, University of Tabriz, Tabriz, Iran Department of plant sciences, Faculty of natural sciences, University of Tabriz, Tabriz, Iran AUTHOR Navid Rabiee [email protected] true 2 Department of Chemistry, Shahid Beheshti University, Tehran, Iran Department of Chemistry, Shahid Beheshti University, Tehran, Iran Department of Chemistry, Shahid Beheshti University, Tehran, Iran AUTHOR Mohammad Rabiee [email protected] true 3 1. Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran 1. Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran 1. Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran LEAD_AUTHOR 1. Farjadian F., Moghoofei M., Mirkiani S., Ghasemi A., Rabiee N., Hadifar S., Beyzavi A., Karimi M., and Hamblin M.R., (2018), Biotechnology advances. 1 2. Ghasemi A., Rabiee N., Ahmadi S., Lolasi F., Borzogomid M., Kalbasi A., Nasseri B., Dezfuli A.S., Aref A., and Karimi M., (2018), Analyst. 2 3. Rabiee N., Safarkhani M., and Rabiee M., (2018), Asian Journal of Nanosciences and Materials. 1: p. 61-70. 3 4. Maheshwari R.K., Singh A.K., Gaddipati J., and Srimal R.C., (2006), Life Sciences. 78(18): p. 2081-2087. 4 5. Trujillo J., Chirino Y.I., Molina-Jijón E., Andérica-Romero A.C., Tapia E., and Pedraza-Chaverrí J., (2013), Redox Biology. 1(1): p. 448-456. 5 6. Chen W., Tuladhar A., Rolle S., Lai Y., del Rey F.R., Zavala C.E., Liu Y., and Rein K.S., (2017), Toxicology and applied pharmacology. 329: p. 58-66. 6 7. Wilken R., Veena M.S., Wang M.B., and Srivatsan E.S., (2011), Molecular Cancer. 10(1): p. 12. 7 8. Woraphatphadung T., Sajomsang W., Rojanarata T., Ngawhirunpat T., Tonglairoum P., and Opanasopit P., (2018), AAPS PharmSciTech. 19(3): p. 991-1000. 8 9. Yallapu M.M., Jaggi M., and Chauhan S.C., (2012), Drug discovery today. 17(1-2): p. 71-80. 9 10. Yallapu M.M., Nagesh P.K.B., Jaggi M., and Chauhan S.C., (2015), The AAPS journal. 17(6): p. 1341-1356. 10 11. Peng S., Li Z., Zou L., Liu W., Liu C., and McClements D.J., (2018), Journal of agricultural and food chemistry. 66(6): p. 1488-1497. 11 12. Arora R., Kuhad A., Kaur I., and Chopra K., (2015), European Journal of Pain. 19(7): p. 940-952. 12 13. Ahmad M.Z., Alkahtani S.A., Akhter S., Ahmad F.J., Ahmad J., Akhtar M.S., Mohsin N., and Abdel-Wahab B.A., (2016), Journal of drug targeting. 24(4): p. 273-293. 13 14. Sahu B.P., Hazarika H., Bharadwaj R., Loying P., Baishya R., Dash S., and Das M.K., (2016), Expert opinion on drug delivery. 13(8): p. 1065-1074. 14 15. Ahmadi S., Rabiee N., and Rabiee M., (2018), Current diabetes reviews. 15 16. Ahmadi Nasab N., Hassani Kumleh H., Beygzadeh M., Teimourian S., and Kazemzad M., (2018), Artificial cells, nanomedicine, and biotechnology. 46(1): p. 75-81. 16 17. Xie J., Fan Z., Li Y., Zhang Y., Yu F., Su G., Xie L., and Hou Z., (2018), International journal of nanomedicine. 13: p. 1381. 17 18. Yan J., Wang Y., Zhang X., Liu S., Tian C., and Wang H., (2016), Drug delivery. 23(5): p. 1757-1762. 18 19. Aggarwal B.B., Bhatt I.D., Ichikawa H., Ahn K.S., Sethi G., Sandur S.K., Natarajan C., Seeram N., and Shishodia S., (2006). 19 20. M Yallapu M., Jaggi M., and C Chauhan S., (2013), Current pharmaceutical design. 19(11): p. 1994-2010. 20 21. Visioli F., Lastra C.A.D.L., Andres-Lacueva C., Aviram M., Calhau C., Cassano A., D’Archivio M., Faria A., Favé G., and Fogliano V., (2011), Critical reviews in food science and nutrition. 51(6): p. 524-546. 21 22. Bordoloi D. and Kunnumakkara A.B., The Potential of Curcumin: A Multitargeting Agent in Cancer Cell Chemosensitization, in Role of Nutraceuticals in Cancer Chemosensitization. 2018, Elsevier. p. 31-60. 22 23. Mirzaei H., Shakeri A., Rashidi B., Jalili A., Banikazemi Z., and Sahebkar A., (2017), Biomedicine & Pharmacotherapy. 85: p. 102-112. 23 24. Momtazi A.A., Derosa G., Maffioli P., Banach M., and Sahebkar A., (2016), Molecular diagnosis & therapy. 20(4): p. 335-345. 24 25. Mobasheri A. and Henrotin Y. Comment on: Efficacy of Curcumin and Boswellia for Knee Osteoarthritis: Systematic Review and Meta-Analysis. in Seminars in Arthritis and Rheumatism. 2018. Elsevier. 25 26. Celik H., Aydin T., Solak K., Khalid S., and Farooqi A.A., (2018), Journal of cellular biochemistry. 26 27. Baspinar Y., Üstündas M., Bayraktar O., and Sezgin C., (2018), Saudi Pharmaceutical Journal. 26(3): p. 323-334. 27 28. Teiten M.-H., Dicato M., and Diederich M., (2014), Molecules. 19(12): p. 20839-20863. 28 29. Bertoncello K.T., Aguiar G.P.S., Oliveira J.V., and Siebel A.M., (2018), Scientific reports. 8(1): p. 2645. 29 30. Noorirad S.N., Pourghasem M., Feizi F., Abedian Z., Ghasemi M., Babazadeh Z., and Rabiee N.Gopal J., Chun S., Anthonydhason V., Jung S., Mwang’ombe B.N., Muthu M., and Sivanesan I., (2018), Journal of Cluster Science: p. 1-7. 30 32. Tajbakhsh A., Hasanzadeh M., Rezaee M., Khedri M., Khazaei M., Sales S.S., Ferns G.A., Hassanian S.M., and Avan A., (2017), Journal of cellular physiology. 31 33. Shi H.-s., Gao X., Li D., Zhang Q.-w., Wang Y.-s., Zheng Y., Cai L.-L., Zhong R.-m., Rui A., and Li Z.-y., (2012), International journal of nanomedicine. 7: p. 2601. 32 34. Wang L., Shi H., and Wang Y., (2013), Sichuan da xue xue bao. Yi xue ban= Journal of Sichuan University. Medical science edition. 44(1): p. 46-8, 75. 33 35. Hasan M.M., Hasan M., Mondal J.C., Al Hasan M., Talukder S., and Rashid H.A., (2017). 34 36. Thangapazham R.L., Puri A., Tele S., Blumenthal R., and Maheshwari R.K., (2008), International journal of oncology. 32(5): p. 1119-1123. 35 37. Takahashi M., Uechi S., Takara K., Asikin Y., and Wada K., (2009), Journal of Agricultural and Food Chemistry. 57(19): p. 9141-9146. 36 38. Bassegoda A., Ivanova K., Ramon E., and Tzanov T., (2018), Applied microbiology and biotechnology. 102(5): p. 2075-2089. 37 39. Karewicz A., Bielska D., Loboda A., Gzyl-Malcher B., Bednar J., Jozkowicz A., Dulak J., and Nowakowska M., (2013), Colloids and Surfaces B: Biointerfaces. 109: p. 307-316. 38 40. Chaves M.A., Oseliero Filho P.L., Jange C.G., Sinigaglia-Coimbra R., Oliveira C.L.P., and Pinho S.C., (2018), Colloids and Surfaces A: Physicochemical and Engineering Aspects. 39 41. Krishnamurthy S., Vaiyapuri R., Zhang L., and Chan J.M., (2015), Biomaterials science. 3(7): p. 923-936. 40 42. Coradini K., Lima F., Oliveira C., Chaves P., Athayde M., Carvalho L., and Beck R., (2014), European Journal of Pharmaceutics and Biopharmaceutics. 88(1): p. 178-185. 41 43. Vandita K., Shashi B., Santosh K.G., and Pal K.I., (2012), Molecular pharmaceutics. 9(12): p. 3411-3421. 42 44. Akl M.A., Kartal-Hodzic A., Oksanen T., Ismael H.R., Afouna M.M., Yliperttula M., Samy A.M., and Viitala T., (2016), Journal of Drug Delivery Science and Technology. 32: p. 10-20. 43 45. Gera M., Sharma N., Ghosh M., Huynh D.L., Lee S.J., Min T., Kwon T., and Jeong D.K., (2017), Oncotarget. 8(39): p. 66680. 44 46. Colzani B., Speranza G., Dorati R., Conti B., Modena T., Bruni G., Zagato E., Vermeulen L., Dakwar G.R., and Braeckmans K., (2016), International journal of pharmaceutics. 511(2): p. 1112-1123. 45 47. Yallapu M.M., Khan S., Maher D.M., Ebeling M.C., Sundram V., Chauhan N., Ganju A., Balakrishna S., Gupta B.K., and Zafar N., (2014), Biomaterials. 35(30): p. 8635-8648. 46 48. Tabatabaei Mirakabad F.S., Akbarzadeh A., Milani M., Zarghami N., Taheri-Anganeh M., Zeighamian V., Badrzadeh F., and Rahmati-Yamchi M., (2016), Artificial cells, nanomedicine, and biotechnology. 44(1): p. 423-430. 47 49. Luckanagul J.A., Pitakchatwong C., Bhuket P.R.N., Muangnoi C., Rojsitthisak P., Chirachanchai S., Wang Q., and Rojsitthisak P., (2018), Carbohydrate polymers. 181: p. 1119-1127. 48 50. Shin G.H., Chung S.K., Kim J.T., Joung H.J., and Park H.J., (2013), Journal of agricultural and food chemistry. 61(46): p. 11119-11126. 49 51. Liu M., Jia Z., Jia D., and Zhou C., (2014), Progress in polymer science. 39(8): p. 1498-1525. 50 52. Grigore M.E., (2017), Journal of Medical Research and Health Education. 1(1). 51 53. Wang J., Liu Q., Yang L., Xia X., Zhu R., Chen S., Wang M., Cheng L., Wu X., and Wang S., (2017), J Biomed Nanotechnol. 13(12): p. 1631-1646. 52 54. Gorzkiewicz M., Jatczak-Pawlik I., Studzian M., Pułaski Ł., Appelhans D., Voit B., and Klajnert-Maculewicz B., (2018), Biomacromolecules. 53 55. Martin R.C., Locatelli E., Li Y., Zhang W., Li S., Monaco I., and Franchini M.C., (2015), Nanomedicine. 10(11): p. 1723-1733. 54 56. Li Z., Ye E., Lakshminarayanan R., and Loh X.J., (2016), Small. 12(35): p. 4782-4806. 55 57. Sailor M.J. and Park J.H., (2012), Advanced materials. 24(28): p. 3779-3802. 56 58. Das M., Shim K.H., An S.S.A., and Yi D.K., (2011), Toxicology and Environmental Health Sciences. 3(4): p. 193-205. 57 59. Lee K.H. and Ytreberg F.M., (2012), Entropy. 14(4): p. 630-641. 58 60. Ghosh P., Han G., De M., Kim C.K., and Rotello V.M., (2008), Advanced drug delivery reviews. 60(11): p. 1307-1315. 59 61. Rao K.M., Kumar A., Suneetha M., and Han S.S., (2018), International journal of biological macromolecules. 112: p. 119-125. 60 62. Baeza A., Castillo R.R., Torres-Pardo A., Gonzalez-Calbet J.M., and Vallet-Regi M., (2017), Journal of Materials Chemistry B. 5(15): p. 2714-2725. 61 63. Aioub M., Austin L.A., and El-Sayed M.A., Gold nanoparticles for cancer diagnostics, spectroscopic imaging, drug delivery, and plasmonic photothermal therapy, in Inorganic Frameworks as Smart Nanomedicines. 2018, Elsevier. p. 41-91. 62 64. Hosseinzadeh H., Atyabi F., Varnamkhasti B.S., Hosseinzadeh R., Ostad S.N., Ghahremani M.H., and Dinarvand R., (2017), International journal of pharmaceutics. 526(1-2): p. 339-352. 63 65. Manju S. and Sreenivasan K., (2012), Journal of colloid and interface science. 368(1): p. 144-151. 64 66. Mendes R., Pedrosa P., Lima J.C., Fernandes A.R., and Baptista P.V., (2017), Scientific reports. 7(1): p. 10872. 65 67. Tu T.-Y., Yang S.-J., Wang C.-H., Lee S.-Y., and Shieh M.-J. HSA/PSS coated gold nanorods as thermo-triggered drug delivery vehicles for combined cancer photothermal therapy and chemotherapy. in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXVII. 2018. International Society for Optics and Photonics. 66 68. Manju S. and Sreenivasan K., (2011), Journal of colloid and interface science. 359(1): p. 318-325. 67 69. Sudhakar K., Moloi S., and Rao K.M., (2017), Journal of Inorganic and Organometallic Polymers and Materials. 27(5): p. 1450-1456. 68 70. Massaro M., Lazzara G., Milioto S., Noto R., and Riela S., (2017), Journal of Materials Chemistry B. 5(16): p. 2867-2882. 69 71. Massaro M., Amorati R., Cavallaro G., Guernelli S., Lazzara G., Milioto S., Noto R., Poma P., and Riela S., (2016), Colloids and Surfaces B: Biointerfaces. 140: p. 505-513. 70 72. Liu M., Chang Y., Yang J., You Y., He R., Chen T., and Zhou C., (2016), Journal of Materials Chemistry B. 4(13): p. 2253-2263. 71 73. Leporatti S., (2017), Polymer International. 72 74. Lvov Y.M., DeVilliers M.M., and Fakhrullin R.F., (2016), Expert opinion on drug delivery. 13(7): p. 977-986. 73 75. Bahrami B., Hojjat-Farsangi M., Mohammadi H., Anvari E., Ghalamfarsa G., Yousefi M., and Jadidi-Niaragh F., (2017), Immunology letters. 190: p. 64-83. 74 76. Das M. and Sahoo S.K., (2012), PLoS One. 7(3): p. e32920. 75 77. Bahrami B., Mohammadnia-Afrouzi M., Bakhshaei P., Yazdani Y., Ghalamfarsa G., Yousefi M., Sadreddini S., Jadidi-Niaragh F., and Hojjat-Farsangi M., (2015), Tumor Biology. 36(8): p. 5727-5742. 76 78. Zwicke G.L., Ali Mansoori G., and Jeffery C.J., (2012), Nano reviews. 3(1): p. 18496. 77 79. Pillai J.J., Thulasidasan A.K.T., Anto R.J., Chithralekha D.N., Narayanan A., and Kumar G.S.V., (2014), Journal of nanobiotechnology. 12(1): p. 25. 78 80. Thulasidasan A.K.T., Retnakumari A.P., Shankar M., Vijayakurup V., Anwar S., Thankachan S., Pillai K.S., Pillai J.J., Nandan C.D., and Alex V.V., (2017), Oncotarget. 8(64): p. 107374. 79 81. Nam N.H., Doan D.H., Nhung H.T.M., Quang B.T., Nam P.H., Thong P.Q., Phuc N.X., and Thu H.P., (2016), Materials Chemistry and Physics. 172: p. 98-104. 80 82. Espinosa A., Di Corato R., Kolosnjaj-Tabi J., Flaud P., Pellegrino T., and Wilhelm C., (2016), ACS nano. 10(2): p. 2436-2446. 81 83. Jayakumar R., Prabaharan M., Nair S.V., and Tamura H., (2010), Biotechnology Advances. 28(1): p. 142-150. 82 84. Arya G., Das M., and Sahoo S.K., (2018), Biomedicine & Pharmacotherapy. 102: p. 555-566. 83 85. Duse L., Baghdan E., Pinnapireddy S.R., Engelhardt K.H., Jedelská J., Schaefer J., Quendt P., and Bakowsky U., (2017), physica status solidi (a). 84 86. Sriram K., Maheswari P.U., Begum K.M.S., Arthanareeswaran G., Antoniraj M.G., and Ruckmani K., (2018), European Journal of Pharmaceutical Sciences. 85 87. Bilas R., Sriram K., Maheswari P.U., and Begum K.M.S., (2017), International journal of biological macromolecules. 97: p. 513-525. 86 88. Kamaraj S., Palanisamy U.M., Mohamed M.S.B.K., Gangasalam A., Maria G.A., and Kandasamy R., (2018), European Journal of Pharmaceutical Sciences. 116: p. 48-60. 87 89. R Kamath P. and Sunil D., (2017), Mini reviews in medicinal chemistry. 17(15): p. 1457-1487. 88 90. Ibrahim H.M., Farid O.A., Samir A., and Mosaad R.M. Preparation of Chitosan Antioxidant Nanoparticles as Drug Delivery System for Enhancing of Anti-Cancer Drug. in Key Engineering Materials. 2018. Trans Tech Publ. 89 91. Sharma G., Naushad M., Thakur B., Kumar A., Negi P., Saini R., Chahal A., Kumar A., Stadler F.J., and Aqil U., (2018), International journal of environmental research and public health. 15(3): p. 414. 90 92. Zhang Y., Shi X., Yu Y., Zhao S., Song H., Chen A., and Shang Z., (2014), International Journal of Polymer Analysis and Characterization. 19(1): p. 83-93. 91 93. Zou Q., Li J., Niu L., Zuo Y., Li J., and Li Y., (2017), Journal of Biomaterials Science, Polymer Edition. 28(13): p. 1271-1285. 92 94. Sesărman A. and Licărete E., (2015), Studia Universitatis Babes-Bolyai, Biologia. 60(2). 93 95. Bisht S., Feldmann G., Soni S., Ravi R., Karikar C., Maitra A., and Maitra A., (2007), Journal of nanobiotechnology. 5(1): p. 3. 94 96. Kumari A., Yadav S.K., and Yadav S.C., (2010), Colloids and Surfaces B: Biointerfaces. 75(1): p. 1-18. 95 97. Mora-Huertas C., Fessi H., and Elaissari A., (2010), International journal of pharmaceutics. 385(1-2): p. 113-142. 96 98. Reis C.P., Neufeld R.J., and Veiga F., Preparation of Drug-Loaded Polymeric Nanoparticles, in Nanomedicine in Cancer. 2017, Pan Stanford. p. 197-240. 97 99. Bose R.J., Ravikumar R., Karuppagounder V., Bennet D., Rangasamy S., and Thandavarayan R.A., (2017), Drug discovery today. 22(8): p. 1258-1265. 98 100. Zhang L. and Zhang L., (2010), Nano Life. 1(01n02): p. 163-173. 99 101. Li L., Xiang D., Shigdar S., Yang W., Li Q., Lin J., Liu K., and Duan W., (2014), International journal of nanomedicine. 9: p. 1083. 100 102. Bansal S.S., Goel M., Aqil F., Vadhanam M.V., and Gupta R.C., (2011), Cancer prevention research. 4(8): p. 1158-1171. 101 103. Khalil N.M., do Nascimento T.C.F., Casa D.M., Dalmolin L.F., de Mattos A.C., Hoss I., Romano M.A., and Mainardes R.M., (2013), Colloids and Surfaces B: Biointerfaces. 101: p. 353-360. 102 104. Bose R.J., Lee S.-H., and Park H., (2016), Biomaterials research. 20(1): p. 34. 103 105. Gallas A., Alexander C., Davies M.C., Puri S., and Allen S., (2013), Chemical Society reviews. 42(20): p. 7983-7997. 104 106. Li C., Ge X., and Wang L., (2017), Biomedicine & Pharmacotherapy. 86: p. 628-636. 105 107. Date T., Nimbalkar V., Kamat J., Mittal A., Mahato R.I., and Chitkara D., (2017), Journal of Controlled Release. 106 108. Jain A., Sharma G., Kushwah V., Garg N.K., Kesharwani P., Ghoshal G., Singh B., Shivhare U.S., Jain S., and Katare O.P., (2017), Nanomedicine. 12(15): p. 1851-1872. 107 109. Zheng Y., Yu B., Weecharangsan W., Piao L., Darby M., Mao Y., Koynova R., Yang X., Li H., and Xu S., (2010), International journal of pharmaceutics. 390(2): p. 234-241. 108 110. Palange A.L., Di Mascolo D., Carallo C., Gnasso A., and Decuzzi P., (2014), Nanomedicine: Nanotechnology, Biology and Medicine. 10(5): p. e991-e1002. 109
ORIGINAL_ARTICLE Preparation and characterisation of SnO–Fe2O3 nanocomposites Nanocomposites are novel materials which are yet to be explored and utilised to its complete potential. Nanocomposites can be tailored by the volume fraction of the matrix, fibre and also by the size and shape of the nanophase material in the composite. Preparing nanocomposite with a desired shape and size remains a challenge. In the present work nanocomposites of SnO–Fe2O3.are prepared by a sol gel route with Ferric chloride and Tin chloride as precursors. The prepared nanocomposites are characterised by X-ray Diffraction(XRD), Ultraviolet Visible Spectroscopy (UV),Scanning Electron microscopy(SEM) and Fourier Transform Infrared Spectroscopy(FTIR). The crystallite size obtained is approximately 60 nm, with a band gap of 3.55 eV. The band gap of the composite could further be tuned with nanosize. https://www.ajnanomat.com/article_79380_9f807478cb8d1e8e07f967f56188eb13.pdf 2019-01-01T11:23:20 2020-07-16T11:23:20 92 98 10.26655/ajnanomat.2019.1.6 Nanocomposite SnO–Fe2O3 Sol gel XRD UV and FTIR Alagappan Subramaniyan [email protected] true 1 Department of Physics,Thiagarajar College of Engineering,Madurai 625015,India Department of Physics,Thiagarajar College of Engineering,Madurai 625015,India Department of Physics,Thiagarajar College of Engineering,Madurai 625015,India LEAD_AUTHOR Veeraiah Veeraganesh [email protected] true 2 Department of Physics,Thiagarajar College of Engineering,Madurai 625015,India Department of Physics,Thiagarajar College of Engineering,Madurai 625015,India Department of Physics,Thiagarajar College of Engineering,Madurai 625015,India AUTHOR 1. P.H.C. Camargo, K.G. Satyanarayana, and F. Wypych, (2009) Mater. Res., 12:1–39 . 1 2. A. Ghorbani-Choghamarani, M. Mohammadi, T. Tamoradi, and M. Ghadermazi, (2018) Polyhedron, . 2 3. A. Praveen Kumar, K. Sudhakara, B.P. Kumar, A. Raghavender, S. Ravi, D.N. Keniec, and Y.-I. Lee, (2018) Asian J. Nanosci. Mater., 1:172–182. 3 4. L.L. Hench and J.K. West, (1990) Chem. Rev., 90:33–72 . 4 5. A. Ghorbani-Choghamarani, M. Mohammadi, and Z. Taherinia, (2018) J. Iran. Chem. Soc., (Article in Press) . 5 6. J. Sharma, R. Bansal, P. Soni, S. Singh, and A. Halve, (2018) Asian J. Nanosci. Mater., 1:135–142 . 6 7. R.A. Meyer and J.J. Green, (2015) . 7 8. P. Gharbani and A. Mehalizadeh, (2018) Asian J. Nanosci. Mater., 27–36 . 8 9. S. Paulose, R. Raghavan, and B.K. George, (2016) RSC Adv., 6:45977–45985 . 9 10. M. Chastellain, A. Petri, A. Gupta, K.V. Rao, and H. Hofmann, (2004) Adv. Eng. Mater., 6:235–241 . 10 11. A.-R.M. Abdul-Raheim, M.E.-S. Shimaa, K.F. Reem, and E.A.-R. Manar, (2016) Adv. Mater. Lett, 7:402–409 . 11 12. M. Batzill and U. Diebold, (2005) Prog. Surf. Sci., 79:47–154 . 12 13. R.S. Kalubarme, J.-Y. Lee, and C.-J. Park, (2015) ACS Appl. Mater. Interfaces, 7:17226–17237 . 13 14. Y. Pimtong-Ngam, S. Jiemsirilers, and S. Supothina, (2007) Sensors Actuators A Phys., 139:7–11 . 14 15. J. Watson, (1984) Sensors and Actuators, 5:29–42 . 15 16. M. Jafari, M. Salehi, and M. Behzad, (2018) Int. J. Nano Dimens., 9:179–190 . 16 17. W.-W. Wang and J.-L. Yao, (2009) J. Phys. Chem. C, 113:3070–3075 . 17 18. T.-D.N. Phan, H.-D. Pham, T.V. Cuong, E.J. Kim, S. Kim, and E.W. Shin, (2009) J. Cryst. Growth, 312:79–85. 18
ORIGINAL_ARTICLE Vitex negundo leaf extract mediated synthesis of ZnO nanoplates and its antibacterial and photocatalytic activities Nanocrystals of ZnO have been prepared using vitex negundo leaf extract via a simple green method. The confirmation of ZnO formation was carried out by UV–Vis-diffuse reflectance spectroscopy (UV-Vis DRS). The prepared nanocrystals were further characterized by photoluminescence (PL), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Field emission-scanning electron microscopy (FE-SEM) and Transmission electron microscopy (TEM). FE-SEM shows the ZnO nanoparticles are nanoplates like structure. With the aim of assessing the photocatalytic activities of ZnO nanocrystals the degradation of methylene blue (MB) under UV radiation was analyzed. Further, the antibacterial activities of synthesized ZnO nanoparticles were screened against S. aureus, S. paratyphi, V. cholerae, and E. coli. https://www.ajnanomat.com/article_79938_1b4afa9478e38df3d7fbd568c299c701.pdf 2019-01-01T11:23:20 2020-07-16T11:23:20 99 110 10.26655/ajnanomat.2019.1.7 Zinc oxide Vitex negundo nanoplate Photocatalytic Antibacterial Activity M Anbuvannan [email protected] true 1 Department of Physics, Sri Akilandeswari Women’s College, Wandiwash-604408, Tamil Nadu, India. Department of Physics, Sri Akilandeswari Women’s College, Wandiwash-604408, Tamil Nadu, India. Department of Physics, Sri Akilandeswari Women’s College, Wandiwash-604408, Tamil Nadu, India. LEAD_AUTHOR M Ramesh [email protected] true 2 Department of Physics, M.V. Muthiah Government Arts College for Women, Dindigul- 624 001,Tamil Nadu, India. Department of Physics, M.V. Muthiah Government Arts College for Women, Dindigul- 624 001,Tamil Nadu, India. Department of Physics, M.V. Muthiah Government Arts College for Women, Dindigul- 624 001,Tamil Nadu, India. AUTHOR E Manikandan [email protected] true 3 Department of Physics ,Thiruvalluvar University College of Arts & Science, Thennangur-604408, Tamil Nadu, India. Department of Physics ,Thiruvalluvar University College of Arts & Science, Thennangur-604408, Tamil Nadu, India. Department of Physics ,Thiruvalluvar University College of Arts & Science, Thennangur-604408, Tamil Nadu, India. AUTHOR R Srinivasan [email protected] true 4 Tamil Nadu State Council for Science and Technology (TNSCST), DOTE Campus, Chennai-600 025, Tamil Nadu, India. Tamil Nadu State Council for Science and Technology (TNSCST), DOTE Campus, Chennai-600 025, Tamil Nadu, India. Tamil Nadu State Council for Science and Technology (TNSCST), DOTE Campus, Chennai-600 025, Tamil Nadu, India. AUTHOR 1. Z. Gao, Y. Gu, Y. Zhang, (2010) J. Nanomater., 10: 1-5 1 2. S. Cho, J. Jang, S. Jung, B.R. Lee, E. Oh, K. Lee, (2009) Langmuir., 25: 3825–3831. 2 3. B.S. Ong, C.S. Li, Y.N. Li, Y.L. Wu, R. Loutfy, (2007) J. Am. Chem. Soc., 129:2750–2751. 3 4. J.J. Wu, Y.R. Chen, W.P. Liao, C.T. Wu, C.Y. Chen, (2010) ACS Nano., 4:5679–5684. 4 5. D. Choi, M.Y. Choi, W.M. Choi, H.J. Shin, H.K. Park, J.S. Seo, J. Park, S.M. Yoon, S.J. Chae, Y.H. Lee, S.W. Kim, J.Y. Choi, S.Y. Lee, J.M. Kim, (2010) Adv. Mat., 22:2187–2192. 5 6. M.J.S. Spencer, I. Yarovsky, (2010) J. Phys. Chem. C., 114:10881–10893. 6 7. Z. Han, L. Liao, Y. Wu, H. Pan, S. Shen, J. Chen, (2012) J. Hazard. Mat., 217:100–106. 7 8. A. Yadav, V. Prasad, A.A. Kathe, S. Raj, D. Yadav, C. Sundarmoorthy, N. Vigneshvaran, (2006) Bull. Mater. Sci., 29: 641-645. 8 9. C. Lui, Y. Masuda, Y. Wu, O. Takai, (2006) Thin Sol. Films, 503:110–114. 9 10. D.C. Look, D.C. Reynolds, C.W. Litton, (2002) Appl. Phys. Lett., 81: 1830–1832. 10 11. Y.C. Kong, D.P. Yu, B. Zhang, (2001)Appl. Phys. Lett.,78: 407–409. 11 12. B.J. Jin, S. Im, S.Y. Lee, (2002) Thin Sol. Films., 366 :107–110. 12 13. V.R. Shinde, C.D. Lokhande, S.H. Han, (2005) Appl. Surf. Sci., 245:407–413. 13 14. B. Liu, H.C. Zeng, (2003) J. Am. Chem. Soc., 125: 4430–4431. 14 15. Y. Ohya, T. Ogata, Y. Takahashi, (2005) J. Ceram. Soc. Jpn., 113:220–225. 15 16. L. Znaidi, C. Sanchez, A.V. Kanaev, (2003) Thin Sol.Films., 428:257–262. 16 17. M.S. Tokumoto, S.H. Pulcinelli, V. Briois, (2003) J. Phys. Chem. B., 107 :568–574. 17 18. A. Senthilraja, B. Subash, B. Krishnakumar, D. Rajamanickam, M. Swaminathan, M. Shanthi, (2014) Mat. Sci. Semiconductor Proc., 22: 83–91. 18 19. D. Kelman, Y. Kashman, E. Rosenberg, M. Ilan, I. Iirach, Y. Loya, (2001) Aquat. Microb. Ecol.,24:9–16. 19 20. K.V. Vanheusden, W.L. Warren, C.H. Seager, (1996) J. Appl. Phys., 79:7983-7990. 20 21. M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam, (2015) Mater Sci Semicond Process., 39 :621–628. 21 22. Y. W. Heo, D. P. Norton, S. J. Pearton, (2005) J. Appl. Phys., 98: 073502. 22 23. B. Lin, Z. Fu, Y. Jia, (2001) Appl. Phys. Lett., 79: (7) 943. 23 24. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, (2001) Adv. Mater,. 13: 113. 24 25. S. Mridha, D. Basak, (2007) Mater. Res. Bull. 42:875–882. 25 26. D. Gnanasangeetha, D. Sarala Thambavani, (2013) Res. J. Mat. Sci. 1:1–8. 26 27. R. Sathyavathi, M.B. Krishna, S.V. Rao, R. Saritha, D.N. Rao, (2010) Adv Sci Lett 3:1–6. 27 28. S. Cai, B.R. Singh, (2004) Biochem. 43: 2541–2549. 28 29. S. Nagarajan K. Arumugam Kuppusamy,(2013) J.of Nanobiotech,11:39. 29 30. J. Sawai, (2003) J. Micro. Meth. 54 :177–182. 30 31. J. Sawai, T. Yoshikawa, (2004) J. App. Micro. 96 :803–809. 31 32. S. Gunalana, R. Sivaraja, V. Rajendran, (2012) Prog. Nat. Sci. Mat. Inter. 22:693–700. 32
ORIGINAL_ARTICLE Synthesis And Characterization of Al Doped And (Co, Al) co-doped ZnO Nanoparticles via Chemical co-precipitation Method Pure, Al doped and (Co, Al) co-doped ZnO nanopowders have been synthesized through chemical co precipitation method at Room temperature, using poly ethylene glycol (PEG) as stabilizing agent. The synthesized samples are characterized by X-ray Diffraction (XRD), Scanning electron microscopy (SEM) & Energy-Dispersive X-ray spectroscopy (EDS), Transmission electron microscopy (TEM), High resolution TEM, SAED and Vibrating sample magnetometer (VSM). XRD results reveals that all the samples possess hexagonal wurtzite crystal structure with no secondary phases. SEM analysis demonstrated the morphology of the Pure, Al doped and (Co, Al) co-doped ZnO nanoparticles while EDS spectrum shows the incorporation of dopant elements. TEM illustrations reveal the exact size of the crystallites, which is approximately confirmed by the XRD data. HRTEM images of the Pure and Al doped ZnO nanoparticles shows clear lattice fringes about 5 nm and co-doped images reveal lattice fringes are about 2 nm. In determining the magnetic properties, VSM technique has been used and VSM analysis of (Co, Al) co-doped samples reveal Super paramagnetic or weak ferro magnetic nature at Room temperature. https://www.ajnanomat.com/article_79949_1af67767a9d779bde6d70fa275d3dc54.pdf 2019-01-01T11:23:20 2020-07-16T11:23:20 111 119 10.26655/ajnanomat.2019.1.8 HRTEM RTFM Lattice fringes Magnetic properties VSM S Venkatramana Reddy [email protected] true 1 Department of Physics, Sri Venkateswara University, Tirupati-517 502, A.P., India. Department of Physics, Sri Venkateswara University, Tirupati-517 502, A.P., India. Department of Physics, Sri Venkateswara University, Tirupati-517 502, A.P., India. LEAD_AUTHOR Swapna Peyyala [email protected] true 2 Department of Physics, Sri Venkateswara University, Tirupati-517 502, A.P., India. Department of Physics, Sri Venkateswara University, Tirupati-517 502, A.P., India. Department of Physics, Sri Venkateswara University, Tirupati-517 502, A.P., India. AUTHOR [1] Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R , Yang P (2001) Science., 292:1897- 1899. 1 [2] Wong E, Searson P (1999) Appl. Phys. Lett., 74: 2939-2941. 2 [3] Choopun S, Vispute R, Noch W, Balsamo A, Sharma R.P, Venkatesan T, Iliadis A, Look D.C (1999) Appl. 3 Phys. Lett., 75: 3947-3949. 4 [4] Swapna P and Venkatramana Reddy S (2018) IOP Conf. Series: Materials Science and Engineering., 310: 012011. 5 [5] Swapna P , Venkatramana Reddy S (2017) Mechanics, Materials Science & Engineering, 9: ISSN 2412-5954 . 6 [6] Wang X.D, Zhou J, Song J.H , Liu J, Xu N, Wang Z.L (2006) Nano Lett., 6: 2768-2772. 7 [7] Yang P.D, Yan H.Q, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi H.J (2002) Adv. Funct. Mater. 12: 323-331. 8 [8] Law M, Greene L.E, Johnson J.C, Saykally R, Yang P.D (2005) Nat. Mater. 4: 455-459. 9 [9] Navale S.C, Gosavi S.W, Mulla I.S (2008) Talanta. 75:1315-1319. 10 [10] Zhang J, Wang S, Wang Y, Xu M, Xia H, Zhang S, Huang W, Guo X, Wu S (2009) Sens. Actuators B. 139: 411-417. 11 [11] Sedky A, Abu-Abdeen M, Almulhem A.A (2007) Physica B 388: 266-273. 12 [12] Yuan D, Wang G.S, Xiang Y, Chen Y, Gao X.Q, Lin G (2009) J. Alloys Compd. 478: 489-492. 13 [13] Wang X.C, Mi W.B, Dong S, Chen X.M, Yang B.H (2009)J. Alloys Compd. 478: 507-512. 14 [14] Mamta Sharma R.M, Mehra (2008) Appl. Surf. Sci. 255: 2527-2532. 15 [15] Ilican S, Caglar Y, Caglar M, Yakuphanoglu F (2008) Appl.Surf. Sci. 255: 2353-2359. 16 [16] Sharma P, Gupta A, Rao K. V, Owens F. J, Sharma R, Ahuja R, Osorio J. M ,Johansson B (2003) Nature Matter. 2: 673-677. 17 [17] Zhang H.-W, W ei Z.-R, Li Z.-Q. Dong G.-Y (2007) Materials Letters. 61: 3605-3607. 18 [18] Hays J, Reddy K. M, Graces N. Y, Engelhard M. H, Shutthanandan V, Luo M, Xu C, Giles N.C, Wang C, Thevuthasan S Punnoose A (2007) J.Phys.: Condens. Matter, 19: 266203. 19 [19] Srinivas K, Rao S. M, Reddy P. V (2011) Journal of Nanoparticle Research. 13: 817-837. 20 [20] Tahir N, Hussain S. T, Usman M, Hasanain S. K, Mumtaz A (2009) Applied Surface Science. 255: 8506- 8510. 21 [21] Costa-Krämer J. L, Briones F, Fernández J. F, Caballero A. C, Villegas M, Díaz M, García M. A, Hernando A (2005) Nanotechnology. 16: 214-218. 22 [22] Karmakar D, Mandal S. K, Kadam R. M, Paulose P. L, Rajarajan A. K, Nath T. K, Das A. K, Dasgupta I Das G. P (2007) Physical Review B, 75: 144404. 23 [23] Lakshmi Y. K, Srinivas K, Sreedhar B, Raja M. M, Vithal M, Reddy P. V (2009) Materials Chemistry and Physics, 113: 749-755. 24 [24] Lu J. J, Lin T. C, Tsai S. Y, Mo T. S, Gan K. J (2011) Journal of Magnetism and Magnetic Materials. 323: 829-832. 25 [25] Buchholz D. B, Chang R. P. H, Song J.-Y, Ketterson J. B (2005) Applied Physics Letters. 87: 082504. 26 [26] Swapna P, Venkatramana Reddy S (2018) Adv.Sci.Lett. 24: 5636-5639. 27 [27]Sankara Reddy B, Venkatramana Reddy S, Koteeswara Reddy N (2013) J Mater Sci: Mater Electron.24: 5204–5210 28 [28] Vanaja A, Ramaraju G.V, Srinivasa Rao K(2016) Indian Journal of Science and Technology 9 ISSN:0974-5645 [29] Kapilashrami M, Xu J, Rao K.V, Belova L (2010) Processing and Application of Ceramics., 4:225-229. 29 [30] Hu J, Zhang Z, Zho Z, Qin H, Jiang M (2008) Appl. Phys. Lett. 93:192503. 30 [31]Kapilashrami M, Xu J, Ström V, Rao K.V, Belova L (2009) Appl. Phys. Lett. 95: 033104. 31 [32] Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao C.N. R (2006) Phys.Rev. B 74: 161306. 32 [33]Garcia M. A, Merino J. M, Pinel E. F, Quesada A, Venta J. D, Gonzalez R, Castro G, Crespo P, Liopis J, GonzalezCalbet J. M, Hernando A. (2007) Nano Lett. 7: 1489-1494. 33 [34] Kaminski A, Das Sarma S (2003) Phy. Rev. B. 68: 235210. 34 [35] Coey J. M. D, Venkatesan M, Fitzgerald C. B (2005) Nature. Mater. 4:173-179. 35 [36] Liao L, Yan B, Hao Y. F, Xing G. Z, Liu J. P, Zhao B. C, Shen Z. X, Wu T, Wang L, Thong J. T. L, Li C. M, 36 Huang W, Yu1 T (2009) Appl. Phys. Lett. 94: 113106. 37 [37] Tian Y, Li Y, He M, Putra I. A, Peng H, Yao B, Cheong S.A, Wu T (2011) Appl. Phy. Lett. 98: 162503. 38 [38] Ogale S. B (2010) Adv. Mater., 22: 3125-3155. 39 [39] Li Y, Deng R, Yao B, Xing G, Wang D, Wu T (2010) Appl. Phys. Lett., 97 :102-506. 40 [40] Zhang B. Y, Yao B, Li Y. F, Liu A. M, Zhang Z. Z, Li B. H, Xing G. Z, Wu T, Qin X. B, Zhao D. X, ShanC.X, Shen D. Z (2011) Appl. Phys. Lett., 99:182503. 41 [41] Xing G. Z, Lu Y. H, Tian Y. F, Yi J. B, Lim C. C, Li Y. F, Li G. P, Wang D.D, Yao B, Ding J, Feng Y. P, Wu1T (2011) AIP. Adv., 1: 022152. 42 [42] Xing G. Z, Wang D. D, Cheng C.-J, He M, Li S, Wu T (2013) Appl. Phys. Lett., 103: 022402. 43 [43] Ochsenbein S. T, Feng Y, Whitaker K. M, Badaeva E, Liu W. K, Li X, Gamelin D. R, (2009) Nature Nanotechnology., 4: 681-687. 44 [44]Djaja N. F, Montja D. A, Saleh R (2013) Advances in Materials Physics and Chemistry, 3: 33-41. 45 [45]Pal B, Giri P.K (2011)International Journal of Nanoscience.,10: 1-5. 46